Behav Res
DOI 10.3758/s13428-011-0182-9

SOS! An algorithm and software for the stochastic

optimization of stimuli

Blair C. Armstrong - Christine E. Watson -
David C. Plaut

© Psychonomic Society, Inc. 2012

Abstract The characteristics of the stimuli used in an ex-
periment critically determine the theoretical questions the
experiment can address. Yet there is relatively little meth-
odological support for selecting optimal sets of items, and
most researchers still carry out this process by hand. In this
research, we present SOS, an algorithm and software pack-
age for the stochastic optimization of stimuli. SOS takes its
inspiration from a simple manual stimulus selection heuris-
tic that has been formalized and refined as a stochastic
relaxation search. The algorithm rapidly and reliably selects
a subset of possible stimuli that optimally satisfy the con-
straints imposed by an experimenter. This allows the exper-
imenter to focus on selecting an optimization problem that
suits his or her theoretical question and to avoid the tedious
task of manually selecting stimuli. We detail how this opti-
mization algorithm, combined with a vocabulary of con-
straints that define optimal sets, allows for the quick and
rigorous assessment and maximization of the internal and
external validity of experimental items. In doing so, the
algorithm facilitates research using factorial, multiple/
mixed-effects regression, and other experimental designs.
We demonstrate the use of SOS with a case study and
discuss other research situations that could benefit from this
tool. Support for the generality of the algorithm is demon-
strated through Monte Carlo simulations on a range of
optimization problems faced by psychologists. The software

B. C. Armstrong (P<) - D. C. Plaut

Department of Psychology and Center for the Neural Basis
of Cognition, Carnegie Mellon University,

5000 Forbes Avenue,

Pittsburgh, PA 15213, USA

e-mail: blairarm@andrew.cmu.edu

C. E. Watson

Department of Neurology and Center for Cognitive Neuroscience,
University of Pennsylvania,

3400 Spruce Street,

Philadelphia, PA 19104, USA

Published online: 21 February 2012

implementation of SOS and a user manual are provided free
of charge for academic purposes as precompiled binaries
and MATLAB source files at http://sos.cnbc.cmu.edu.

Keywords Stimulus selection - Internal validity - External
validity - Factorial designs - Multiple/mixed-effects
regression designs - Constraint satisfaction - Stochastic
optimization - Monte Carlo simulation

All empirical researchers recognize that a fundamental chal-
lenge in the preparation of a new experiment is the selection
of stimuli that are optimally suited to address the theoretical
question of interest. The definition of what constitutes an
optimal set can be unpacked into two main components: (1)
The manipulation of the variable(s) of interest should be as
large as possible in the absence of confounds with other
variables (i.e., internal validity), and (2) the stimuli should
be representative of their underlying population(s), thus
permitting inferences to items not present in the experiment
(i.e., external validity). Researchers also know that the con-
sequences of failing to select an adequate set of stimuli can
be dire. In the worst-case scenario, suboptimal stimuli can
generate putative theoretical “advances” and protracted
periods of belief in incorrect theoretical positions (Cutler,
1981; Gernsbacher, 1984). In a less extreme scenario, sub-
optimal stimuli can make it impractical to achieve the nec-
essary statistical power to study the effects of interest (e.g.,
Armstrong, 2007). Even in the best-case scenario, the use of
suboptimal stimuli wastes time and other resources in efforts
to increase the statistical power of the experiment, such as
by running additional participants.

Given these issues, a newly minted psychologist would
undoubtedly expect a high level of rigor in the methods
available for selecting stimuli, particularly given the progress
that has been made in other aspects of experimental design
and analysis. For example, in visual word recognition

@ Springer

http://sos.cnbc.cmu.edu

Behav Res

research, massive efforts have been devoted to identifying
variables that influence performance (Cortese & Khanna,
2007), to creating databases and software that list the values
of these variables for large sets of items (Brysbaert & New,
2009; Coltheart, 1981; Davis, 2005; Kucera & Francis, 1967),
to increasing the precision of timing hardware and software
(Brainard, 1997; Schneider, Eschman, & Zuccolotto, 2002),
and to improving the statistical frameworks used to an-
alyze data (Baayen, Davidson, & Bates, 2008; Clark, 1973;
Raaijmakers, Schrijnemakers, & Gremmen, 1999). The state
of the art with respect to the selection of experimental items
would therefore come as a shock: the standard method for
selecting stimuli is to do so by hand with the assistance of a
sorting function in a spreadsheet application.

The aim of the present work is to bring methodological
rigor to the stimulus selection process, with the ultimate
goal of facilitating the development of experiments that are
better suited for the empirical evaluation of researchers’
hypotheses. To this end, we introduce SOS—an algorithm
and software for the stochastic optimization of stimuli used
in experiments, based on a variant of a classic stochastic
relaxation search (Kiefer & Wolfowitz, 1952). We start by
characterizing the benefits and drawbacks of existing man-
ual selection heuristics and computational search algorithms
that can be used to identify optimal experimental stimuli.
We then briefly describe how SOS augments a simple man-
ual optimization heuristic to rapidly and reliably discover
optimized stimuli. This is accomplished by tailoring a gen-
eral stochastic optimization algorithm so that it is well suited
to the types of selection constraints and challenges to suc-
cessful optimization faced by psychologists during item
selection and other similar problems. Following the descrip-
tion of the algorithm, we report the results of Monte Carlo
simulations of SOS performance in solving optimization
problems that are encountered in a variety of experimental
designs. These examples serve to illustrate the robustness of
the algorithm and its superiority to manual stimulus selec-
tion, the new types of experimental designs it facilitates, and
the increased rigor it brings to evaluating and optimizing the
internal and external validity of experimental items. These
simulations also demonstrate that our software implementa-
tion of the algorithm can be used with relative ease to
identify optimal stimuli. Note that although all of these exam-
ple optimization problems involve matching word sets for use
in psycholinguistic experiments—an area in which such opti-
mizations may be particularly valuable—the algorithm is do-
main general and can be applied to any situation that involves
selecting from a population of items characterized on a num-
ber of dimensions. Extended uses of SOS, such as for the
selection of control participants for neurologically impaired
patients in case series analyses, are briefly discussed in the
final section. A user manual including additional details of the
SOS procedure, example optimizations, and the full, open-

@ Springer

source software implementation of the algorithm as either
MATLAB source files or precompiled binaries for major
operating systems is available free of charge at http:/sos.
cnbe.cmu.edu.

A manual heuristic for identifying optimal stimuli

The SOS algorithm has much in common with a simple
manual heuristic for identifying optimal stimuli; indeed, the
simplest version of the algorithm (“greedy” optimization of
stimuli, discussed later) basically amounts to a formalization
of this heuristic. It can be broken down into the following
major steps:

1. Determine the conditions that will be employed to study
the variable(s) of interest.’

2. Define constraints that establish how variables should dif-
fer or be equated across conditions or within a condition.

3. Identify a population of items and fill each condition
with a sample of these items.

4. Search for an item in the sample and an item in the
population that could be swapped to better satisfy the
constraints.

5. Evaluate the degree to which the constraints have been
satisfied (e.g., run t-tests to confirm that the variables
that should differ between conditions do, in fact, differ).
Repeat the search and evaluation steps until the con-
straints have been satisfied to a target threshold or until
some other reason to stop the search has arisen, such as
simply deciding to use the best set found to date after
many unsuccessful attempts at swapping items.

6. Assess the degree to which the sample stimuli are repre-
sentative of the underlying populations from which they
originated. This step is often ignored but is necessary to
draw statistical inferences to the broader population of
items. Specifically, it is possible that the constraints have
limited the items that are included in the sample to some
contorted and unusually distributed subpopulation of the
original population. Evaluating whether this is or is not
the case is critical for determining the correct statistical
analyses and inferences that can be drawn on the basis of
the selected stimuli (Baayen et al., 2008; Clark, 1973;
Hino & Lupker, 1996; Raaijmakers et al., 1999).

! For the purpose of illustration, we have tried to keep examples simple
and transparent by using well-known experimental designs. However,
we recognize that other superior but less familiar designs may be more
suitable for testing some of these hypotheses (see, e.g., Baayen et al.,
2008, for alternatives to standard multilevel designs in the study of
continuous variables). How SOS can facilitate the selection of stimuli
in some of these alternative designs is discussed in later sections.

http://sos.cnbc.cmu.edu
http://sos.cnbc.cmu.edu

Behav Res

Problems with the manual heuristic

By and large, the manual heuristic just described is not
unreasonable for selecting experimental stimuli. Neverthe-
less, it possesses several undesirable characteristics:

* The procedure is not actually optimal relative to auto-
mated optimization methods (support for this claim is
provided later in this article and in van Casteren &
Davis, 2007). This becomes increasingly evident as
the complexity of the optimization problem increases.
As was foreseen by Cutler (1981), the complexity of
stimulus selection has only increased as time has
passed, so these differences will likely be exacerbated
in the future.

* The procedure is exceedingly tedious and time consum-
ing and is, consequently, responsible for the reuse of
existing items. As a result, the generalizability of effects
is hampered, since the gold standard for generalization is
replication with new items (Stanovich, 1997). The recy-
cling of a particular set of stimuli can also lead to a
single point of failure for a large body of work: If a
problem is identified later with that particular set, the
results of all the studies using those stimuli may be
called into question. For instance, the ambiguous words
used by Rodd, Gaskell, and Marslen-Wilson (2002),
have been reused in studies by Armstrong and Plaut
(2008) and Beretta, Fiorentino, and Poeppel (2005).
However, the results of these studies were called into
question when later work by Armstrong and Plaut
(2011) identified additional variables that were not con-
trolled for in these items. Issues with the Snodgrass and
Vanderwart (1980) pictures raised by Bunn, Tyler, and
Moss (1998) also cast doubt on the outcomes of many
studies employing these items.

* The procedure is rarely followed up with an examina-
tion of whether the selected stimuli are representative
of the populations from which they were sampled. The
lack of this step is conceivably due to a combination
of factors, including the lack of a standard means of
evaluating representativeness and the lack of pressure
for these analyses to be included when results
obtained using a particular set of items are reported.
This oversight is troubling because the pressure to
satisfy the constraints may distort how well the popu-
lation is represented in the sample. Thus, the results of
an experiment run with a particular set of stimuli may
not generalize to the population from which the stim-
uli were sampled; the group of items that can satisfy
the constraints may consist of only a small and possi-
bly atypical portion of the population. Although this
problem may exist for many different types of con-
straints a researcher could impose on the optimization
process, factorial designs that cross intercorrelated

variables may be particularly at risk of being nonrep-
resentative (see Baayen et al., 2008, for a discussion).
The lack of an evaluation of representativeness is also
somewhat paradoxical, given the long-standing
debates concerning the use of statistics to generalize
the results of experiments both across items and across
participants (Baayen et al., 2008; Clark, 1973; Hino &
Lupker, 1996; Raaijmakers et al., 1999). These tech-
niques are of little value if the population to which the
results are being generalized is unknown.
* The procedure is prone to human error.

Given these problems, it is clear that the simple manual
heuristic, although not without its merits, leaves much to be
desired.

Alternatively, one avenue that intuitively might appear to
address many of the problems with the manual heuristic
outlined above would be to use a simple search algorithm
from computer science to find optimal stimuli. However,
these algorithms also tend to be unsuitable for selecting
stimuli because exhaustive searches of all combinations of
items are impractical and random searches of a subset of the
possible combinations of items do not reliably identify
optimal sets.

Stochastic optimization of stimuli: A brief overview

Considered as a whole, there are some advantages to both
the human heuristic, which often yields stimuli that are
sufficiently optimized for researchers to consider them suit-
able for use, and simple computational search algorithms,
which allow very large numbers of combinations of stimuli
to be examined but do not focus their efforts on exploring
the combinations that are most likely to be optimal. A
successful amalgamation of these two approaches might
therefore leverage the unique advantages of both without
the faults of either.

SOS is an attempt at such a synthesis. In its most basic
form, the algorithm amounts to a translation of the steps
from the manual stimulus selection heuristic into a “greedy”
optimization search. In simple cases, this involves the fol-
lowing basic steps, although a range of more advanced
options may also be applied. A detailed description of these
steps, including their formal underpinnings, is presented in
the user manual and is recommended reading for researchers
who wish to take full advantage of the algorithm.

1. Define the samples (experimental conditions).

2. Specify constraints that establish the desired relation-
ships between the different variables within and/or be-
tween the samples, and associate each constraint with a
cost function that operationalizes violations of the con-
straint. A broad vocabulary of constraints has been

@ Springer

Behav Res

implemented in SOS that may be used to select items for
a wide variety of experimental designs. These con-
straints are briefly described here, and the full details
and formal underpinnings of the constraints are pre-
sented in Appendix 1.

Currently, the vocabulary of constraints can be divid-
ed into two main types: hard constraints and soft con-
straints. Hard constraints express all-or-none rules that
restrict the values of a specific variable an item may
have if it is to be included in a sample. For instance,
hard-bound constraints allow the user to impose specif-
ic upper and lower bounds on the values of a variable
for all the items in the sample. These constraints take
precedence over the soft constraints and serve to filter
items that can potentially be included in a sample.

In contrast, soft constraints do not operate on the
basis of all-or-none rules; rather, they express all viola-
tions as matters of degree. For instance, a simple cost
function for minimizing differences between two con-
ditions ¢l and ¢2 on a column of data containing each
item’s value on a variable, x, is to square the difference
between the means of the two conditions on that vari-
able:

Ouiv (Xe1,Xe2) = (X2 — icl)z- (1)

Soft constraints are the main type of constraint that a
user will employ during an optimization, and all have the
same general form as the simple constraint outlined above.
Many different soft constraints have been implemented to
express a variety of desired relationships between the
variables contained in one or more samples. These soft
constraints can be subdivided into two main classes: sim-
ple constraints and meta-constraints. Simple constraints
allow for (1) minimizing or maximizing differences in
the means or variances between variables at either the
group or the item level between two samples or within a
sample (two-sample distance constraints), (2) matching
means or variances to target values (one-sample distance
constraints), (3) distributing values of variables evenly
across the range of the population or the current sample
(soft entropy constraints), which may be particularly use-
ful in mixed-effects/regression designs, and (4) matching
the correlation between two variables to a target value
(correlation-matching constraints), which is often zero
so as to eliminate correlations between independent varia-
bles that increase collinearity and weaken statistical power.

Meta-constraints operate on the same principles as
simple constraints but serve to constrain the values of
other constraints. This effectively allows the user to
control the importance and degree to which different
constraints are satisfied, which may be relevant in some
optimizations. These constraints can be used (5) to

@ Springer

allow a constraint that maximizes the difference be-
tween two conditions to be optimized only once anoth-
er constraint that minimizes the difference between two
conditions has been minimized—for instance, to ensure
that differences on nuisance variables are eliminated
before maximizing the differences between conditions
on a variable of interest (conditional matching con-
straint)—or (6) to require that two constraints be satis-
fied to the same degree (matching constraint).

The full set of cost terms that operationalize the
constraints a user imposes on item selection constitutes
the total cost of the set of stimuli—that is, the degree to
which all of the constraints have been satisfied. For
instance, in an investigation of word frequency effects
using both a low- and a high-frequency word condition,
the full set of constraints might consist of a two-sample
distance constraint that maximizes the differences be-
tween the samples on word frequency, such that the
mean word frequency is lower in the low-frequency
condition than in the high-frequency condition, and
other two-sample distance constraints that minimize
the mean groupwise differences on confounding varia-
bles such as word length.

Associate each sample with a population of items and
fill that sample with a (random) sample from that pop-
ulation. This sample typically constitutes a very subop-
timal sample, as expressed by a relatively high cost
value (in comparison with other cost values obtained
later in the optimization). Other initial sampling meth-
ods, such as specifying all or part of the items in a list,
are discussed later in the article and in the user manual.
Attempt to improve the samples by randomly selecting
two items, one from a particular sample and the other
either from its population (population feeder item selec-
tion) and/or from another sample sharing the same pop-
ulation (sample and population feeder item selection),
and swapping them. If the swap results in a reduction of
the total cost, the optimization “moves” to the swap set;
otherwise, the original samples are retained, and the
optimization “stays” with the original set. Each of these
attempted swaps is referred to as an iteration and can be
accomplished in a computationally efficient manner via
a local update. Local updates consist of calculating the
difference in cost resulting from changing the two items,
rather than recalculating each cost term using the whole
data set. For example, rather than recomputing the mean
by averaging the sum of values across all items, the
value of the item being swapped out can be removed
from the previously calculated mean, and the value of
the item being swapped in can be added to that mean
(see the user manual for details).

Statistically evaluate how well the constraints have been
satisfied—for instance, by using #-tests to determine

Behav Res

whether differences across variables to be maximized
have p-values less than .05 and differences that are
to be minimized have p-values greater than .5. Other
statistical tests are also available to evaluate whether
a correlation between variables has been matched to
a target value (often zero, to remove confounding
covariates) or to evaluate whether the values of a
variable are uniformly distributed (either across the
range of values in the sample or across those in the
population, depending on the intended generaliza-
tions to be drawn from the items). If these statistical
criteria have been met (or no improvement in the
value of the cost function has occurred for a speci-
fied number of iterations, called the freeze point), the
optimization terminates.

6. Assess the degree to which the selected items represent
the broader population. This is accomplished by run-
ning the optimization procedure several times and com-
paring the degree of overlap in the selected items across
different runs. High overlap suggests that only a restrict-
ed subpopulation of items is capable of satisfying the
constraints. Consequently, generalization of the results
obtained with these items to the broader populations
associated with each sample may not be appropriate.
Conversely, low overlap suggests that results obtained
with these items can be generalized to the broader
population.

This greedy optimization routine is extremely rapid, by
virtue of only making swaps that lower the overall cost of
the samples, and may be sufficient to satisfy an experiment-
er’s constraints in many cases. Additionally, the results of
such an optimization are used to configure the more ad-
vanced stochastic optimization routine, as is discussed later.
Consequently, a greedy optimization is prescribed as the
first type of optimization to run. However, greedy optimi-
zation has a drawback in that making only swaps that
decrease the cost may sometimes result in the algorithm
becoming prematurely stuck in a local minimum, where
swapping any one pair of items would result in a cost
increase. Thus, despite the fact that a better global minimum
cost value may exist elsewhere in the set, reaching it is not
possible without at least some swaps that increase cost. The
existence and likelihood of becoming stuck in such a local
minimum is a function of several characteristics of a given
optimization problem and is usually not explicitly deter-
mined, because this would require the use of a computation-
ally impractical exhaustive search of all possible samples.
As a general guideline, however, the likelihood of becoming
trapped in local minima increases as sample size increases,
as population size decreases, and as the number and com-
plexity of the constraints increase (see Hinton & Sejnowski,
1986, for additional discussion).

Stochastic optimization

A principled means of avoiding these local minima is in-
stantiated in the stochastic variation of the optimization
search. Here, instead of applying a strict “move to the set
of items with the lowest cost” rule, the cost difference,
Acost, between the original set of items and the swap set
only biases the likelihood of choosing the set with the lower
cost, with an additional term adding random variability to
this choice as in classic stochastic relaxation searches (Hin-
ton & Sejnowski, 1986; Kiefer & Wolfowitz, 1952; Rumel-
hart, Smolensky, McClelland, & Hinton, 1986). The
variability in the decision to swap to a different set of items
formally guarantees that an optimal set will be found if the
optimization is run for a sufficient number of iterations,
since it allows the algorithm to escape from local minima.

The amount of random variability can be manipulated via
a parameter referred to as femperature (T), where higher
temperatures increase the random element of the decision
and where temperature has a lower bound of zero. The
likelihood of swapping a pair of items is determined in a
sigmoid function that depends on both the Acost and tem-
perature parameters, as formalized in the following equa-
tion:

1

—Acost

swa, ACOSta T) =
Pswap) e

Figure 1 illustrates this relationship for several sigmoid
functions generated with different values of temperature and
Acost. As this figure shows, temperature modulates the
degree to which Acost can bias the likelihood that a swap
that reduces cost will take place: An infinitely high

1 TTTTTTTTTTT T I I T T T T T T TTTTTT

-\
8!
0.9 ‘\‘\‘ J
o
o .
0.8} .* o™
o \0\ “¢‘
= | * i
g o7 B «**
8 * ®
2 06f & e i
1<} SO
e} (N4
<
o 05
© o
c R
o 04r L 2IR 4 B
— * *
@ o* {
> . N4
S 0.3F PS4 N4 B
S ® *
ey ® K4
025e* o |
\‘\ — i |nf
* - mEt7
0.1 \‘\‘ Imim [
- L] o
-
t=0
0HHH\HHHHHIIIHJHHHHHHI\IIIJ 1 1 1 1 T

-10 -8 -6 -4 -2 0 2 4 6 8 10
Acost (current item — swap item)

Fig. 1 Depiction of the likelihood of “moving” to the “swap” item or

“staying” with the current item based on a range of values of the cost

difference, Acost, between the two items that could be swapped and on
temperature. Inf = infinite

@ Springer

Behav Res

temperature causes swaps to be made without any consider-
ation of whether the swap increases or decreases cost,
whereas a temperature value of zero eliminates random
variability and is equivalent to a greedy search. Consequent-
ly, fully leveraging the stochastic algorithm requires using
an intermediate temperature value that ultimately leads to
reductions in cost without causing the algorithm to become
stuck in local minima.

Rather than attempting to identify a single temperature
value, we have found, as others have before, that more rapid
and reliable optimizations are possible by using an annealing
function that gradually lowers temperature throughout the
course of the optimization. Specifically, temperature decays
at an exponential rate that has been shown to be optimal in
related optimization problems (Ackley, Hinton, & Sejnowski,
1985; Kirkpatrick, Gelatt, & Vecchi, 1983). The user manual
and the example in Appendix 2 detail how this temperature-
annealing schedule is calibrated on the basis of the results of
the greedy optimization. Essentially, this process simply
involves initially setting temperature to a sufficiently high
value such that the vast majority of swaps are being biased
by Acost only to a trivial degree. Subsequently, temperature is
gradually lowered toward a Acost value that allows for a small
percentage of swaps to still occur when an equivalent greedy
optimization reaches its freeze point. This allows for the
algorithm to escape from the minimum found in the greedy
search if it is only a local one.

SOS performance on a range of optimization problems

We next report the results of Monte Carlo simulations on
several example optimization problems to demonstrate the
value and robustness of SOS. In the first of these examples,
we examine a set of previously published psycholinguistic
experiments for which the stimuli were manually selected to
conform to a standard one-way design that dichotomizes a
continuous variable (Morrison & Ellis, 1995). Using the
same population of items these researchers had at their
disposal, we compare the results of manual selection with
those of SOS and show that SOS yields superior matches.
Subsequently, we report how SOS can be used to construct
another set of stimuli optimally suited for use in what is, in
our view, a superior mixed-effect regression analogue of the
original one-way designs used in two separate experiments.

After reporting the performance of SOS on these detailed
examples, we briefly report the results of several additional
realistic optimizations that correspond to experimental
designs often encountered by researchers. Again, note that
although all of the examples we present in this section
concern psycholinguistic research questions, we cover
designs that any psychological researcher might encounter,
irrespective of his or her domain of inquiry. The scripts that
contain the commands for each realistic case are available

@ Springer

via the online user manual and may be useful starting points
for users who want to create their own optimizations.

Comparison of SOS stimuli with manually selected stimuli
in a two-level, one-way design

As a first illustration of the SOS algorithm, we elected to
compare its performance with the items selected manually in
an influential study by Morrison and Ellis (1995; hereafter,
MED9S). They examined whether the classic “word frequen-
cy” effects observed in a range of tasks (e.g., Schilling,
Rayner, & Chumbley, 1998) have been overestimated be-
cause of the correlation between word frequency and anoth-
er variable, the age at which words are learned, or “age of
acquisition” (AoA; Gilhooly & Logie, 1982). To try to
disentangle these effects, ME95 designed several experi-
ments in which frequency and AoA were each varied inde-
pendently while the other variable was held constant. As an
example case for SOS, we will examine the stimuli ME95
designed to examine the effects of word frequency in isola-
tion (Experiment 2): 24 pairs of high- and low-frequency
words that differed on frequency while being matched on
AoA, word length (in number of letters, expressed in the
letters variable), and imageability.

On the basis of ME95’s description of the way in which
they selected stimuli, we recreated the population of items
they had at their disposal by taking the union of the items
having both AoA and imageability ratings (Gilhooly &
Logie, 1980) and word frequency data (Kucera & Francis,
1967) in the MRC psycholinguistics database (Coltheart,
1981). In this population, the correlation between AoA
and frequency was .22 and ranged from .04 to .67 between
each of these two variables and the length and imageability
variables. Next, following ME95, we created a high-
frequency population from words with frequencies greater
than 110 per million, and a low-frequency population from
words that occurred 10 times per million or less. By manu-
ally selecting 24 pairs of stimuli from these two populations,
ME9S were able to vary the high- and low-frequency stim-
ulus lists significantly on frequency (p = 2.5 x 10" based on
a two-tailed #-test). The two lists were matched perfectly on
length (p = 1.0). However, the two lists were matched less
well on AoA (p = .20) and not at all on imageability (p =
.01).

With the aim of outperforming manual stimulus match-
ing, we used SOS to select high- and low-frequency words
from the same population as that used by ME95. A tutorial
detailing the full process of running this optimization in the
SOS software is included in Appendix 2. In brief, this
process involved creating constraints indicating that the
words in the low-frequency condition should have lower
frequencies than the words in the high-frequency conditions,
constraints indicating that the words in both conditions

Behav Res

should be matched on length, AoA, and imageability, and
additional constraints that allowed for frequency differences
to be maximized only once length, AoA, and imageability
had been relatively well matched (see the user manual for
additional motivating details for these constraints). We then
dictated that the algorithm should continue to run until the
two lists differed on frequency with a p < .05 and were
matched on AoA, length, and imageability (p <.5). All tests
and constraints were pairwise in nature, as in ME95.

Using an initial greedy optimization, we calibrated the
parameters for the temperature-annealing function used in
the stochastic optimization on the basis of the assumption
that the greedy version had become prematurely stuck in a
local minimum (as described above and in detail in
Appendix 2). We then proceeded to run a stochastic version
of the algorithm (referred to as the SOS optimization). This
optimization found a solution that exceeded the statistical
criteria we set: the high- and low-frequency samples that
were selected varied on frequency [paired #23) =16.13, p =
4.92 x 107", but not on AoA [paired #23) = —0.68, p =
.51], length [paired #23) = 0.33, p = .75], or imageability
[paired #23) = 0.39, p = .70]. These results show that SOS
quickly found sets of stimuli that are better suited to test the
theoretical question posed by ME95. In particular, the ME95
samples were less significantly different in terms of word
frequency, while also being less well matched on AoA and
imageability (which differed significantly across their two
samples).

The descriptive statistics for the high- and low-frequency
samples identified by ME95 and two SOS optimizations are
presented in Table 1 and offer additional insight into how
SOS obtained better matches (the SOS[length] optimization
is described in detail later). This table shows that whereas
both SOS optimizations generally found approximately
equivalent or substantially better matches than did ME95

on AoA, length, and imageability, the mean difference in
word frequency was, in fact, smaller in these samples than in
MED9S. Nevertheless, a more significant effect of word fre-
quency resulted, because there was increased variability in
the difference scores for the ME95 match; the effect size of
the frequency difference was 1.7 for the ME95 matches
versus 3.3 for the SOS optimization. This should translate
into decreased within-condition error when behavioral data
related to these items are analyzed and a reduced reliance on
the data from the few items with the most extreme frequen-
cies. Without going into detail here (but see Appendix
1), the cost function used by the pairwise minimization
constraints also served to minimize any correlation be-
tween the two samples in ways that are not reflected in
the #-tests but do manifest themselves in measures of
collinearity, such as the variance inflation factor. For
instance, the variance inflation factor for the frequency
effect was 16% higher in the ME95 matches than in the
SOS optimization, which would lead to more powerful
frequency inferences if the matched variables were in-
cluded as covariates. Taken together, these results serve
to demonstrate how the constraints instantiated by SOS
can lead to the discovery of alternative, superior item
sets, sometimes in potentially unexpected ways.

An examination of Table 1 reveals a further characteristic
of the optimization that is worth additional discussion: The
high- and low-frequency samples discovered in the SOS
optimization, although nonsignificantly different on length
(p = .51), are not as well matched on the variable of length
as those reported by ME95 (p = 1.0). This outcome is a
natural effect of the SOS algorithm: All constraints will tend
to be matched to the same level unless a particular constraint
is prioritized. Insofar as there is no strong theoretical basis
for prioritizing a particular constraint, such behavior is usu-
ally desirable, since it tends to eliminate all confounds to

Table 1 Descriptive statistics for the samples used in Experiment 2 of Morrison and Ellis (1995) and for the optimized samples identified by SOS

Sample Frequency AoA Length Imageability
Low-frequency condition ME95 6 3) 3.58 (0.02) 5.04 (0.81) 4.62 (0.72)
SOS 5 3) 3.89 0.91) 571 (1.73) 4.80 (0.85)
SOS[length] 6) 3.86 (0.83) 6.38 (1.56) 4.84 (0.78)
High-frequency condition ME95 224 (129) 3.57 (0.83) 5.04 (0.81) 4.62 (0.92)
SOS 153 (45) 3.86 (0.88) 575 (1.85) 481 (0.90)
SOS[length] 161 (47 3.85 (0.76) 6.38 (1.56) 4.85 (0.82)
(High — Low) frequency ME95 218 (130) —-0.01 (0.01) 0.00 (0.00) —-0.47 (0.86)
condition SOS 148 (45) -0.03 (0.24) 0.04 0.62) 0.02 (0.20)
SOS[length] 157 (47) -0.01 (0.18) 0.00 (0.00) 0.01 (0.21)

Standard deviations are in parentheses. ME95 = manually selected stimuli. SOS = stimuli selected by SOS as described in text and in Appendix 2.
SOS[length] = stimuli selected by SOS with an additional weighting parameter to emphasize matching the conditions on word length. The (High —
Low) Frequency section contains the mean pairwise difference and standard deviation of these difference scores across the two samples

@ Springer

Behav Res

approximately the same extent. However, if precise matches
on one variable are particularly important for theoretical
reasons, SOS can be configured to attempt to satisfy the
constraints imposed on this variable to an increased degree.
To illustrate this capacity, we ran an additional optimization
in which we added a weight of 100 on the length constraint,
as well as changed the statistical criterion for length to
require a perfect match between the conditions (p = 1.0).
This weighting parameter was chosen so that the initial cost
values associated with length dominated overall cost. The
choice of a value of 100 is not specific to this problem and
generally produces this type of distribution across the cost
terms, because SOS operates on the normalized values of
each variable, as described in the user manual. Additionally,
we modified the statistical criterion for the frequency test
such that an equally significant difference in frequency was
required to stop the optimization as was obtained in the
human match (p = 2.5 x 10 ®). This change was made
because, otherwise, the more lenient p-value criterion of
.05 was exceeded, and the optimization was stopped before
much better sets were discovered. In this new optimization,
we perfectly matched high- and low-frequency samples on
length (p = 1.0), while still exceeding the original statistical
criteria we stipulated and the matches obtained by ME95
(AoA, p = .81; imageability, p = .82; frequency, p = 3.2 X
10'*). For comparison purposes, Table 1 also lists the
descriptive statistics for this additional set of items (the
SOS[length] optimization).

In addition to evaluating the internal validity of the items
produced by SOS during the course of the optimization, we
also assessed the degree to which this optimization selected
stimuli that were representative of the underlying popula-
tion. As was described carlier, we cannot make claims about
the generalizability of any experimental effects observed
with these stimuli if they represent an idiosyncratic subset
of the population. To evaluate the generalizability of the
SOS stimuli, we ran five different stochastic optimizations
until each passed the statistical criteria we had set. We then
calculated the overlap in SOS to determine how similar the
resulting lists in each condition were to each other. On
average, the high-frequency lists shared 13% (SD = 0.09)
of the total number of items across each optimization, while
the low-frequency lists shared 8% (SD = 0.06; values of
25% and 8% were obtained in analogous comparisons for
the items discovered in the SOS[length] optimization).
These values suggest that the five optimal solutions were,
in fact, quite different from one another and that the algo-
rithm was not discovering the same unique solution each
time. Thus, we would expect any behavioral effects ob-
served with these stimuli to generalize to new sets of stimuli
on the basis of the principles of statistical inference. Specif-
ically, many different items can be chosen to satisfy the
specified constraints. Using any one of these samples thus

@ Springer

corresponds to using one of many possible random samples
of a broad population of items. Consequently, the results
obtained with any one of these samples are likely to gener-
alize to the population. Nevertheless, it is worth noting that
generalization based on statistical inference alone can occa-
sionally be misleading if the random sample that is selected
is unusual in an idiosyncratic manner purely by chance. The
most confident generalizations would thus also be supported
by running more than one experiment, using different ran-
dom samples of items that satisfy the experimental con-
straints. By evaluating the overlap between several sets of
items generated by SOS, sets of items suitable for this task
are already available for this purpose.

A regression analogue and expansion of the one-way design
used by Morrison and Ellis (1995)

In the original ME9S work, the authors examined the effects
of word frequency while holding AoA constant in one
experiment (Experiment 2) and of AoA while holding word
frequency constant in another experiment (Experiment 1).
These inferences could also have been made in a single
experiment using a standard 2 x 2 factorial design that
crosses frequency and AoA. Such a design would carry
the benefit of ensuring that the significance of a given effect
was ascertained in the context of the same levels of the other
effect. This is because the same mean AoA and frequency
values would be used in all of the statistical comparisons
and this need not be the case across different independent
experiments, which could confound the results. Practically,
however, using such a design is not possible on the basis of
how the conditions were defined in ME95; the hard cutoffs
for inclusion in the high- and low-frequency and in the
early- and late-AoA conditions used in Experiments 1 and
2 do not leave enough items in the four cells of the proposed
design to create samples of the same size as in the ME95
experiments, even before stimulus optimization. This also
suggests that somewhat different populations of items were
used to study each type of effect.

The inability to simultaneously study the effects of AoA
and word frequency may, however, be a result of the restric-
tiveness of a factorial design. Specifically, it is often the case
that researchers will impose hard bounds on the items that can
enter into particular cells of the design so as to maximize the
differences observed between conditions. Presumably, this is
part of what motivated ME95 to employ the low-frequency
upper bound of 10 and the high-frequency lower bound of 110
in their second experiment and to employ similar constraints
on the early- and late-AoA samples in their first experiment.
This strategy is problematic for several reasons. First, sam-
pling items in this manner allows only items from the extreme
ends of the continuous variables under study to be selected for
use in the experiment. Interpolation to this range using a

Behav Res

standard linearity assumption, as in many analyses in psychol-
ogy, is questionable in this case, since there are no data with
which to evaluate this assumption. Second, finding items to
fill the “atypical” cells in the design (e.g., the high-frequency,
later-acquired words, which are rare given the negative corre-
lation between frequency and AoA) is often difficult—if not
outright impossible—because of the relatively small popula-
tions of items that can be considered for inclusion in these
cells. Third, these designs can often be underpowered because
within-condition variance on the variable of interest is trans-
ferred into the error term of standard statistical analyses. For
example, words with frequencies of 110 and 11,000 would
both be grouped together in the high-frequency condition, and
this more precise frequency information would not enter into
the analyses.

An alternative design, which does not suffer from these
problems, is to sample a broad range of items that can be used
to study the target effects via mixed-effects/regression analy-
ses (Baayen et al., 2008). To do so, we used SOS to select 100
items with a uniform distribution over the range of AoA and
word frequency values in a slightly restricted version of the
population used in our first example.” This was accomplished
using entropy constraints. We also included constraints that
eliminated the correlations between the two main variables of
interest, as well as between each main variable, length, and
imageability, so as to minimize collinearity and boost the
power of the regression. Statistical criteria were selected such
that the optimization would terminate when all of the correla-
tions were nonsignificantly different from zero (p > .5) and
when the distributions were nonsignificantly different from
uniform distributions (p = .001; Appendix 1 discusses the
motivation for using a smaller p-value when testing the uni-
formity of a distribution).

Initial runs of SOS showed that the statistical tests related
to the correlations were being passed but that the optimiza-
tion terminated by reaching the freezing point when the
frequency and AoA distributions still differed from uniform
distributions (e.g., frequency was still positively skewed,
with few high-frequency items in the sample). Alternatively,
if only the distribution constraints and statistical tests related
to frequency and AoA were included, the algorithm success-
fully found a satisfactory solution (albeit one with signifi-
cant intercorrelations among the different variables). Which
of these solutions is most desirable is debatable, since each
reflects a different trade-off of internal and external validity
and statistical power. Moreover, these two results suggest, as

2 SOS was unable to create a uniform distribution over the full range of
the frequency variable in the initial population of items, even when this
was the only constraint in the optimization. This was because the
frequency data in the population were strongly right-skewed and there
were insufficient high-frequency items to sample the upper end of the
frequency continuum uniformly. To avoid this problem, the top 5% of
words with the highest frequencies were trimmed.

would be expected on the basis of the original ME95 exper-
iment structure, that pulling apart these two dimensions is a
nontrivial task. Nevertheless, we attempted to find a com-
promise between these two extremes by adding a weight to
each of the frequency and AoA distribution constraints so
that they were of the same or a larger order of magnitude as
those of the correlation constraints at the beginning of the
optimization; a weight of 100 satisfied this goal.

An initial Monte Carlo simulation showed that the
updated version of the greedy optimization succeeded in
satisfying the statistical criteria 8/10 times. Using the results
of a randomly selected failed optimization, we then config-
ured a stochastic version of this same simulation. In this
case, the optimization succeeded 10/10 times. To illustrate
the effect of the entropy constraints on creating uniform
distributions, the initial and final AoA and frequency dis-
tributions are presented in Fig. 2.

Additionally, we computed the overlap between the 10
samples that were discovered by the stochastic optimization.
The overlap between these samples was 42%, suggesting
that the satisfaction of this constraint does depend in part on
a subset of these items. Consequently, a researcher might
wish to consider relaxing some of the statistical criteria if the
external validity of the experiment is paramount.

Performance of SOS on additional examples

Next, we briefly report the results of several realistic optimi-
zations corresponding to additional experimental designs often
encountered by researchers. These optimizations demonstrate
the capabilities of SOS in a variety of other real-world scenar-
ios. Our examples are based primarily on the word data from
the MRC Psycholinguistic Database (Coltheart, 1981) that
have values for Kucera and Francis (1967) frequency and the
number of letters, phonemes, and syllables for each word,
unless otherwise specified. Variables were considered matched
if p > .5 and significantly different when p <.05. All examples
below were run as stochastic optimizations unless otherwise
stated, and the number of successful optimizations (out of 10)
is also included. The script files for these and additional
designs are available in the user manual.

Categorical/ANOVA designs

One-way designs First, we implemented several one-way
designs using two samples with 100 words in each sample.
These designs are similar to the ME9S5 case described above
(e.g., matching two lists for length, number of syllables, and
number of phonemes, while maximizing frequency differences)
but did not involve the stipulation of upper and lower bounds
for inclusion in the two different samples. Instead, SOS discov-
ered the optimal separation between these distributions while

@ Springer

Behav Res

] Entropy — entSamplelAoA

0.9+ b
0.8 b
0.7t b
061 b
0.5+ E
0.4+ b
0.3 b

p(item from a particular bin)

02} |
0.1} 1

0 #umw
100 200 300 400 500 600 700
AoA

] Entropy — entSamplelAoA

0.9+ b
0.8} b
0.7t b
0.6 b
0.5+ E
0.4+ E
0.3r b
0.2+ b

p(item from a particular bin)

0.1r b

O L B B Bl Bl [Wy S P S—_—— n
100 200 300 400 500 600 700
AocA

Fig. 2 Plots generated by the SOS software of the pre- and post-
optimization AoA and frequency distributions when a constraint was
imposed to pressure the creation of uniform distributions across the
populations (AoA range, 125-694; frequency range, 1-214). The

sampling all items from the same population. These optimiza-
tions succeeded 10/10 times when matched groupwise.

A similar optimization also succeeded 10/10 times when
items were matched pairwise, with the following caveat.
Because of the details of the cost function used to minimize
pairwise differences between conditions, pairwise matching
also reduces the variance in the pairwise differences. This
sometimes produces samples that, while differing only very
slightly in mean values, yield p-values less than .5 for
variables intended to be matched (see Appendix 1 for addi-
tional discussion). In one instance of this optimization, for
example, the mean number of phonemes in the high-
frequency sample was 5.08 (SE = 0.17), while the mean
number of phonemes in the low-frequency sample was 5.02
(SE = 0.18). Although a difference of 0.06 phonemes is very
unlikely to affect the behavior of participants in a substantial
manner, the low variance in each list caused the samples to
be under the p > .5 cutoff for matching constraints, #[paired]
(99) = 1.23, p = .22. To prevent these effectively "good"
samples from being rejected by SOS, we have implemented

@ Springer

Entropy — entSamplelKFfrequency

0.9+ 1
0.8+ 1
0.7+ 1
0.6+ 1
0.5+ 1
0.4+ 1
0.3 1

p(item from a particular bin)

0.2p]

0.1 i 1
0

0 50 100 150 200 250

KFfrequency

Entropy — entSamplelKFfrequency

0.9+]
0.8r]
0.7+ 1
061 1
0.5¢ 1
0.4+ 1
0.3r 1
0.2+ 1

p(item from a particular bin)

011]

0 sllesele s o sosss s moall
0 50 100 150 200 250
KFfrequency

preoptimization AoA and frequency distributions had entropy values
of —0.012 and —0.071, and these entropy values increased to —0.0095
and —0.0061 by the end of the optimization. These final distributions
did not differ from a uniform distribution (p > .001)

a “threshold” parameter that allows statistical tests in SOS to
be passed if the mean difference between two samples is less
than a specified amount. In the example discussed here—
two samples maximized for frequency differences but
matched pairwise on length, phonemes, and syllables—we
dictated that optimizations could pass if the variables to be
matched had means within 0.5 of each other. Depending on
the problem at hand and the scale of the variables, users may
opt to not use thresholding at all or to change the cutoff to
more appropriate values for the particular samples they are
attempting to create.

We also examined the performance of SOS when three,
rather than two, final samples were desired; in other words,
the experimental design in this case corresponds to a one-
way design with three levels of frequency (low, medium,
and high). Additionally, all of these conditions were
matched for length, number of syllables, and number of
phonemes. The three levels of frequency were not stipulated
in advance. Rather, SOS discovered an optimal parcellation
along the frequency variable, in which each level differed

Behav Res

significantly from the others, and the intermediate level was
approximately equidistant between the low and high levels.
This optimization produced acceptable stimuli 10/10 times
matching items group-wise and 10/10 times matching items
pairwise (a threshold of 0.1 was used when the samples
were matched pairwise).

Twwo-way designs Often, researchers want to examine the
influence of two variables simultaneously. These 2 x 2
designs often pose substantial difficulties for manual selec-
tion heuristics, especially when each cell in the 2 % 2 design
also needs to be matched for multiple confounding variables
(as in the ME95 example). Nevertheless, provided that
sufficient items exist in the population to create such a
design, SOS is capable of discovering appropriate samples.
To demonstrate this, we had SOS create a 2 x 2 design that
crossed the effect of word frequency with that of word
length, while minimizing any differences on imageability
across these four samples. Items were drawn from a single
population containing all of the words in MRC for which
length and AoA data were available and for which word
frequencies were constrained to be less than or equal to
1,000. This last restriction was imposed for the same reasons
as described in the regression analogue to the ME95 design.
No restriction on which type of item could be placed into a
high or low cell on a particular variable was imposed such
that the optimizer was required to discover an optimal
division between the conditions. SOS found samples that
satisfied these constraints 10/10 times with both groupwise
and pairwise constraints, although threshold parameters
were required in the pairwise version of the optimization.

Other optimization problems

Another feature of SOS is the ability to specify some stimuli
as being “fixed.” This allows SOS to discover a sample that
possesses certain relations to a predetermined list—for in-
stance, items from a previous experiment that is being
extended. For example, we asked SOS to find a sample of
100 nouns that were matched to 100 preselected verbs for
frequency, length, and number of syllables and phonemes.
This optimization was successful 10/10 times when matched
groupwise and 10/10 when matched pairwise (a threshold of
0.1 was used when the samples were matched pairwise). In a
similar vein, SOS can also be used to find two samples of
words matched to specific, user-inputted values of frequen-
cy while still matching these samples on length, number of
syllables, and number of phonemes. This optimization was
successful 10/10 times groupwise and 10/10 times pairwise.

Additional types of optimizations, including but not lim-
ited to matching the variability across conditions, matching
to a target correlation, spreading scores uniformly within a

sample rather than across the range of the population, and
replacing only a subset of items in a sample, are also
possible in SOS (see Appendix 1 and the user manual for
details).

Extended applications

Although the discussion to date has focused primarily on
the selection of stimuli for new psycholinguistic experi-
ments, SOS can be applied to a wide range of optimization
problems. Moving beyond stimulus selection, one exciting
potential application of SOS is in participant selection,
particularly in the context of investigating the effects of a
neurological dysfunction such as semantic dementia, her-
pes simplex encephalitis, or stroke on a cognitive system
such as semantic memory. Patterson and Plaut (2009) have
recently argued that case-series analyses (e.g., Woollams,
Lambon Ralph, Plaut, & Patterson, 2007) may be more
useful than single-case studies when studying the mecha-
nisms that underlie these systems and their neural sub-
strates. Conducting such case-series studies, however, is
still quite a challenging endeavor because of the need to
match individual patients with healthy controls on a num-
ber of variables (e.g., age, years of education, performance
on baseline intelligence tests). Using SOS to select these
controls could greatly enhance a study’s ability to inform
researchers on the underpinnings of a particular type of
impairment.

Another application of SOS concerns the reanalysis of a
subset of items from an experiment that was found, post
hoc, to use a suboptimal set of items. For instance, Watson
(2009) matched two categories of verbs, those with strong or
weak associations with specific motor programs, on pub-
lished imageability ratings. Later, she discovered that the
published verb ratings did not correlate with ratings elicited
by participants when verbs were rated within their grammat-
ical context (e.g., “the race” vs. “to race”). Moreover, a
regression-based solution to this problem was suspect because
the ratings were bimodally distributed. By selecting an opti-
mal subsample of items with SOS (treating the existing sam-
ple items as the population), Watson was able to reanalyze
these data without the presence of any imageability con-
founds. SOS was also successfully used for a similar problem
where population and/or dialect differences led to a confound
on familiarity measures in the items used by Armstrong and
Plaut (2008) and in selecting a larger set of items for use in
follow-up work (Armstrong & Plaut, 2011).

Another use of SOS has been to leverage data from
behavioral piloting for functional magnetic resonance imag-
ing (fMRI) experiments to preemptively select ideal stimu-
lus sets. With standard block-design fMRI experiments, it is
often desirable to have different conditions (blocks) equated

@ Springer

Behav Res

for accuracy and reaction time, ensuring that differences in
neural activity are not due to difficulty confounds (Binder,
Desai, Graves, & Conant, 2009). Frequently, researchers
collect behavioral data on the tasks that will be presented
in the scanner, and, if accuracy or reaction time differences
exist, they are forced either to manually select subsets of
blocks or individual trials that are equated on these measures
or to include these measures as covariates in analyses of the
BOLD data itself. When Watson and Chatterjee (2012)
encountered this issue, they instead used SOS to select items
from the behavioral pilot experiment that were equated for
difficulty across conditions.

Using and modifying SOS

One guiding principle in the development of the SOS
algorithm and software was that it would be impossible
to anticipate all of the potential uses and insights other
researchers might have with regards to the optimization
procedure. The SOS software was therefore written in a
standard, multiplatform, easy-to-program environment
(MATLAB) that is already familiar to many psycholo-
gists. The source code for the software has been made
freely available for academic purposes. The use of
object-oriented programming practices, combined with
the implemented examples of different constraints and
cost functions discussed in this article, the user manual,
and the source code documentation, should also facili-
tate the modification and extension of this code for new
purposes.

Conclusion

Despite the critical importance of selecting optimal stimuli,
this aspect of experimental design has largely been ignored,
while other aspects have benefited from massive advances.
In the present work, we have outlined some of the obvious
and not-so-obvious effects that suboptimal stimuli can have
on the internal and external validity of experiments and,
ultimately, on the overall value of a particular study. We
have also provided a theoretical basis and empirical support
for a solution to these problems—the SOS algorithm and
software—which implements an optimization tailored for
easy use in psychological research. This tool allows
researchers to focus on choosing an optimization problem
that suits their theoretical question, rather than on the te-
dious task of manually selecting stimuli and the inherent
limitations of that method. We anticipate that many
researchers will find this tool useful when selecting exper-
imental stimuli, and, looking ahead, we expect SOS will be

@ Springer

further developed and extended to enhance many other
aspects of experimental and analytical procedures.

Acknowledgements This research was supported by an NSERC
Alexander Graham Bell Canada Graduate Scholarship to B.C.A., an
NIH training grant (T32 NS054575-04) to C.E.W. as a trainee, and a
Commonwealth Universal Research Enhancement Program Grant to
Carnegie Mellon University and the University of Pittsburgh. We thank
Natasha Tokowicz, Sarah Laszlo, Yevdokiya Yermolayeva, and the
members of the Reading and Language group at the University of
Pittsburgh for helpful comments and discussion. An early draft of this
work was included in C.E.W.’s doctoral dissertation. Correspondence
about this article may be sent to blairarm@andrew.cmu.edu or wat-
sonc@mail.med.upenn.edu. Correspondance about the SOS software
may be sent to sos@cnbc.cmu.edu.

Appendix 1
Implemented cost functions

A number of constraints and associated cost functions have
currently been implemented in the SOS software and can
broadly be divided into two categories: hard constraints and
soft constraints. Hard constraints effectively amount to strict
inclusion/exclusion rules governing the values of a variable
in a condition and are functionally equivalent to filtering out
items that exceed specified cutoffs from the population
before beginning to optimize the stimuli. For instance, a
hard constraint can be used to specify that all of the word
frequencies in a low-frequency condition must be below a
particular value. In contrast, soft constraints have continu-
ous cost functions that denote the degree to which a set of
stimuli satisfies the constraints. In principle, all possible sets
of stimuli could be selected to satisfy the constraints to
greater or lesser extents.

Because the interesting and practically useful aspects of
the stochastic optimization algorithm relate to maximally
satisfying soft constraints—particularly of the “simple”
type, introduced in the next section—the main focus of
our work has been to enrich the vocabulary of these soft
constraints for users to employ in their own optimizations.
We therefore discuss these soft constraints first and return to
the issue of hard constraints later.

Soft constraints

Simple soft constraints Simple soft constraints are soft con-
straints that directly reflect differences in normalized values
on specified variables. These are the main type of constraint
that needs to be stipulated before beginning the optimization.
There are four main types of simple soft constraints: single-
sample distance constraints, two-sample distance constraints,
entropy (uniformity) constraints, and correlation-matching
constraints. We begin by introducing two-sample soft distance

Behav Res

constraints because they are likely the most widely applicable
type of constraint.

Two-sample distance constraints This first type of con-
straint is concerned with minimizing or maximizing the
distance between two samples of data on a particular mea-
sure, f(x), at either the group or the item level. Currently, this
distance measure corresponds to either the mean or the
standard deviation of each sample on a particular variable.
In most applications, the data are expected to correspond to
the values of the same variable across two different condi-
tions (e.g., maximize the difference in word frequency
across a low- and a high-frequency word condition). This
notwithstanding, the software implementation also allows
for the data from two different variables to be compared
within a single condition or for two different variables to be
compared across different conditions. For simplicity of no-
tation, we will assume that the cost function is measuring
the same variable across two different conditions in the
following discussion.

As was mentioned previously, maximizing or mini-
mizing the distance between two samples on a particular
measure, applied to the item data for each sample f(x),
can be operationalized using the simple cost penalty
function Oy (Xe1,Xe2) in Eq. 1. In our experience
using SOS, this function has proven to be a reasonable
starting point for operationalizing the desired relation-
ship between the two variables on f(x). However, in
some instances, it may be desirable to prioritize the
importance of some constraints over others. To this
end, a weighting coefficient, b (with a default value of
1.0), and an exponent, n (with a default value of 2.0),
have been added as free parameters. To accommodate
the usage of exponents, the absolute value of the dif-
ference between the two measurements must now also
be taken so that all differences produce a positive value.
The result is a more general minimization function for
group-level differences:

Oun (Xe1, X2, b, m) = b(|f(xe2) — f(xe1)])". (2)

A maximization function for group-level differences can
be generated in a similar manner. A particular ordering of
conditions can be enforced by adding the additional sign
function s(f(x.1), f(X.2)) that equals 1 when cl is less than
c2 and —1 otherwise:

OorderMAX (Xcl s X2, ba n)

= —s(f(Xc1), f(x2)) Omin (Xe1, X2, by m). 3)

Manipulating either the weight or the exponent allows
for the prioritization of each cost function relative to the

total cost. As a general guideline, small manipulations of
the weight allow for more subtle emphasis of some
constraints over others, wherecas manipulations of the
exponent induce more heavy-handed changes in cost.
Weight manipulations are reminiscent of the [coeffi-
cients in a linear regression. This allows a researcher to
prioritize the importance of satisfying constraints im-
posed on different variables on the basis of existing
regression analyses that denote the degree to which each
variable influences performance.” Exponent manipula-
tions can be used to quickly increase or decrease cost
to well above or below the level of other constraints.
Such a manipulation effectively causes these constraints
to be satisfied first before satisfying the other constraints.
The details of how this occurs are discussed in the
section on temperature annealing in the main text and
in the user manual.

In addition to satisfying group-level constraints, simi-
lar constraints can also be imposed at the item level,
provided there are equal numbers of items in the two
conditions being compared. These pairwise constraints
provide a tighter restriction on the relationships that exist
across the items in the conditions being compared at the
expense of being harder to satisfy. Pairwise constraints
may be particularly beneficial in two situations. The first
is, unsurprisingly, when a researcher desires to run pair-
wise statistical tests across items, thereby increasing the
power of the experiment. The second situation occurs
when, after matching a variable across conditions, any
remaining variance due to the variable is to be extracted from
the dependent variable using a regression-based analysis (e.g.,
multiple/mixed-effects regression, ANCOVA). In this case,
controlling for a group-level measurement of the variable, such
as the mean, may still lead to different distributions of that
variable across the conditions. For example, imagine trying to
match on word length at a groupwise level when creating high-
and low-frequency conditions in a factorial design. Even by
successfully matching the mean word length across the two
conditions, it is still possible that the distribution of word
lengths differs between them. For instance, word length might
be skewed positively in the low-frequency condition and neg-
atively in the high-frequency condition. When these two dis-
tributions are merged into a single “length” variable and are
regressed out, the composite length distribution may be

? The relationship between /3 in regression and b in the cost functions is
similar, but nonidentical, due to the nonlinearities in the cost and swap
likelihood functions, although the two behave similarly. The similarity
of this relationship is particularly strong in the context of multiple
minimization constraints all being satisfied to similar degrees and
when Acost falls within the relatively linear range of the sigmoidal p
(swap) function.

@ Springer

Behav Res

correlated with the low- and high-frequency conditions.* Such
a situation can lead to an interaction among the indepen-
dent variables and a reduction in the variance in the
dependent measure that can be uniquely ascribed to the
effects of either length or frequency in the statistical
analyses. Relatedly, this may enlarge the estimates of
the variance for each predictor (i.e., increase the variance
inflation factor). In contrast, if the distributions across
the two conditions were matched on word length, as
would occur if pairwise matching across stimuli is
employed, such an interaction would not be possible.
This can increase the amount of unique variance that is
ascribed to the effect of word frequency and boost the
statistical power of that effect. This is demonstrated in
the regression-analogue example case in the main text.
Pairwise constraints require only a simple extension of the
groupwise constraints presented earlier. The only difference
between the two is that instead of calculating the particular
measure of interest (e.g., mean) once across each condition
before subtracting the measure of one condition from the
other, the values for each pair of items, i, are subtracted from
one another before calculating the measure. The absolute
value of measures for each of the pairs can then be summed
across all pairs, &, and the average measure can be extracted by
dividing this sum by the number of pairs. For instance, to
minimize the difference across all & pairs of items in two
different conditions, the following cost function is used:

b k n
OpairMIN(Xcl , Xe2, b, n) = E <Z ’f(Xcz,a: - X{:l‘i) {) . (4)
=1

The same basic adjustments can be applied to the cost
function used to maximize group-level differences, yielding
a pairwise maximization cost function.

Single-sample distance constraints A simplified variant of
the two-sample soft distance constraint has also been devel-
oped that allows differences on a particular measure to be
assessed relative to a user-specified value, v, instead of against
the value of that measure in another sample. This type of
constraint may be useful when generating a condition with a
particular value on a particular variable or when minimizing
the variability in a condition by matching the standard devia-
tion of the condition to zero. The equations used to express the
costs associated with these single-sample distance constraints

“ Note that such a relationship may be present even if a pairwise #-test
across the values in each condition produces a p-value of 1.0. This is
because the #-test assesses whether the mean deviation across pairs—as
opposed to the sum of the absolute values of the deviations across pairs—
equals zero. A -test p-value of 1.0 is therefore not sufficient to guarantee
that this problem has been avoided.

@ Springer

are identical to those for the two-sample constraints, only the
values of the data points in what we have labeled x.; are
replaced with the user-specified value. For instance, to mini-
mize the group-level difference between a condition, X, and a
target value, v, we simply substitute v for f(x.;) in Eq. 2:

OvalueM]N(U’ X2, b, n) = b(|f(Xc2) - U|)n (5)

The same change can be applied to all of the other two-sample
distance constraints discussed previously.

Soft entropy constraints By themselves, soft distance con-
straints are often sufficient to stipulate the types of relation-
ships among stimuli that are imposed in standard multilevel
or factorial designs. However, Baayen et al. (2008) recently
criticized these types of factorial designs and argued that
they are ill-suited for studying the effects of continuous
variables (e.g., studying word frequency effects using low-
and high-frequency conditions).

There are two reasons why these designs are problematic.
First, they often employ distinct collections of items that are
as widely separated as possible on the variable of interest so
as to maximize statistical power. Insofar as the distributions
across conditions do not overlap, this weakens the degree to
which the effects observed at these extreme ends of the
continuum can be interpolated to the intermediate values
between the conditions that have not actually been sampled.
Indeed, strict adherence to statistical theory dictates that
statistical inferences cannot be made to these items, which
were not part of the effective populations that were sampled
to create the conditions. Moreover, even if this restriction
were relaxed, this type of design would require the strong
and sometimes questionable assumption that these extremes
of the continuum are linked by a particular (usually linear)
function that cannot be empirically verified with the items
used in this design [e.g., Balota, Cortese, Sergent-Marshall,
Spieler, & Yap, 2004, and Brysbaert & New, 2009, report a
nonlinear effect of log(frequency) for high-frequency
words that would be incorrectly modeled by a linear
function]. Second, these types of designs can often be
statistically underpowered because they discard the exact
data points associated with individual items—represented
on a continuum—by collapsing them into qualitative
groups in which all items are treated identically and items
across groups are treated differently. For instance, two
words with frequencies of 1 and 50 might both be
grouped together into a low-frequency condition, and
two items with frequencies of 49 and 51 might be split
into the low- and high-frequency conditions. To the extent
that more precise data can actually account for more
variance, this kind of falsely dichotomous design results
in a loss of statistical power.

Behav Res

After considering these issues, Baayen et al. (2008) con-
cluded that a superior experimental design would involve
sampling items that span the whole continuum of values of a
given variable and using a form of multiple regression to
analyze the results. This procedure has the effect of boosting
both the theoretical validity and statistical power of the
analyses. The challenge with a regression approach is that
variables that are not uniformly distributed will be poorly
sampled for some ranges of values and oversampled for
others. As a result, statistical analyses can be biased and
prevent accurate inferences from being made to at least a
subset of the items. Such a scenario is particularly problem-
atic when practical considerations, such as studying patient
populations, permit only a relatively small number of items
to be tested.

To take full advantage of the statistical framework
advanced by Baayen et al. (2008), it is therefore useful
to sample uniformly across the range of values for the
variables that will be analyzed. The entropy constraint
applies a pressure for stimuli to be distributed in this
fashion, either across the range of values for that variable
in the entire population or only within the sample. This
allows a researcher to differentially accentuate either the
external or the internal validity of the experiment,
respectively.

The entropy constraint assesses uniformity by examining
the degree to which the values of a variable, x, in a given
condition are equally distributed in a histogram. The x-axis
of the histogram is divided into 7 bins, where 7 is by default
the number of items and has lower and upper bounds
corresponding to the lower and upper bounds of the popu-
lation or sample, as specified by the user on the basis of the
scope of the desired generalization. The y-axis denotes the
frequencies of items in the condition that fall within a given
bin. An example of such histograms as generated by SOS is
presented in the regression-analogue example case in the
main text. The entropy, or uniformity, of this distribution
can then be formalized as a function that increases in
value as the distribution of the variable becomes more
uniform. One function that satisfies this criterion is to
define a simple measure of entropy, S as a function
of the proportion of items, p, in bin i of the histogram,
summed across all n bins:

n
Ssimple (p) = - Z piln p;.
=1

This equation amounts to a simplified version of
Boltzmann—Gibbs entropy in which a constant has been
set to 1 (Salazar, Plastino, & Toral, 2000). In this case,
entropy is maximized when the values of p; are identical
for all i—that is, when values are uniformly distributed in the

histogram.” This simple entropy equation is then subjected to
some minor algebraic adjustments to bring it in line with the
other cost functions that have been presented. First, the data on
which the other constraints operated were normalized before
cost was calculated so that all constraints would make similar
contributions both within and across different optimizations.
As it stands, this is not true for the entropy formula we have
introduced, whose upper and lower bounds change depending
on the number of items that are included in the sample. The
first step in correcting this problem is to ensure that the
entropy function can produce a defined value for every pos-
sible distribution of values. However, when the proportion of
the total number of items in a bin is zero, the result is unde-
fined. Our solution to this problem was to simply add a
constant of one when calculating the natural logarithm. Be-
cause the natural logarithm produces positive, as opposed to
negative, values when applied to numbers greater than one,
the resulting equation now produces negative values, but
larger (closer to zero) values still reflect a more uniform
distribution, as before. Furthermore, the entropy equation
can be standardized so that different sample sizes with the
same overall distributions of stimuli produce identical entropy
values. This is accomplished by dividing the previous equa-
tion by the number of items in the condition:

n
_Zl piIn(p; + 1)
! 1=

Smmple(p) - = 7
Finally, to make the entropy equation more intuitive, it is
useful to standardize its range to an interval such as [—1,0].
Such a normalization would facilitate the interpretation of
intermediate values and make the boundary values for the
equation more evident. To accomplish this, it is first neces-
sary to calculate the upper and lower bounds of entropy. The
lower bound corresponds to the case where all stimuli fall
within a single bin and all of the other bins are empty. In this
case, the contributions to entropy for all of the empty bins
will equal zero (because 1n(1) = 0). Substituting into the
existing entropy formula, the lower bound therefore simply
corresponds to IHT(Z) Similarly, the upper bound corresponds
to the case where each bin contains 1 of the » stimuli.
Substituting into the entropy formula, the upper bound is,
therefore, 1 In(! + 1), where the summation across n and
the division by n have canceled each other out. Having
established the upper and lower bounds, the entropy formula

can then be standardized to have a range of [-1,0] via a

> In strict terms, there is no attempt to distribute the data uniformly
within each bin, so this is true only in the details with large numbers of
bins/items. Other, more sophisticated methods could be employed to
ensure a perfectly uniform distribution, but we do not believe that their
complexity and computational overhead are justifiable in the vast
majority of cases.

@ Springer

Behav Res

linear transformation. The standardization moves the upper
bound to zero and divides by the difference between the
upper and lower bounds, causing the lower bound value to
be shifted to —1:

—In(t4+1)+ an piln(p; + 1)
i=1

In(2) — In(2 +1)

S(p) = —

The cost penalty used to maximize the entropy of a
variable is then simply a function of the absolute value of
entropy, so that higher entropy values generate lower costs:

OentMAX(pv bv n) = b(|S(p)Dn (6)

Soft correlation-matching constraints Another important
consideration when constructing stimuli for multiple/
mixed-effect regression analyses is the correlation that
may exist between the independent variables. Typically,
such a correlation is not desirable, because it reduces the
degree to which variance accounted for by the overall model
can be uniquely attributed to a particular independent vari-
able. This causes an underestimation of the statistical sig-
nificance of each of the independent variables (by increasing
the error variance inflation factor) and, as the collinearity of
the independent variables increases, can invalidate the mod-
el as a whole (because the coefficient matrix becomes sin-
gular; Healy, 1968). Consequently, it is typically desirable to
minimize the correlations that exist between the independent
variables. In particular, this may be especially useful when
recasting classic factorial designs in terms of regression
(Baayen et al., 2008), since this allows for continuous var-
iables—ideally, distributed uniformally across a range, as is
possible using an entropy maximization constraint—to be
decorrelated without necessitating the creation of full-
factorial models where all cells must be included to elimi-
nate such correlations. For instance, such a correlation-
matching constraint could be used to stipulate that the length
and the frequency values for a given sample must be uncor-
related when creating an analogue of a 2 x 2 factorial design
involving those variables, as in the second example case in
the main text. Of course, classic factorial designs may further
benefit from eliminating such correlations across additional
variables that are included as covariates and not as separate
factors in the design. More generally, it may also be desirable
to match the correlation between two independent variables to
a particular value—for instance, to show that an effect reported
in a previous study is replicated when such a correlation is
present but eliminated when the correlation is removed.

The correlation-matching constraint provides support for
these types of scenarios. It allows for users to match the
correlation between two variables, 7 (X.;, X.) either within
or between two samples, to a prespecified value, v. The cost

@ Springer

function used to express this constraint is similar in form to
that for the distance minimization constraints, with the ad-
dition of two modifying equations that alter the behavior at
the boundary conditions when the variance in x.; and/or x.,
is zero:

OmatchCorrel (Xcl ; X2, ba n, U)

b(|r(Xe1,X2) —)", if oy, >0and oy, >0
=1, if oy, =0and oy, =0
0, if oy, =0xor oy, =0.

(7)

Assuming the default values for the weight and expo-
nent, the resulting function is bounded by [0,2] but usually
operates between 0 and 1 when attempting to eliminate the
correlation between two variables. This is particularly use-
ful because the range of the cost associated with the cor-
relation matching constraint is therefore quite similar to
that of the entropy constraint. Consequently, when both
constraints are used simultaneously, which is often likely
to be the case, they should each be approximately equally
satisfied by default.

Soft meta-constraints In contrast to soft simple constraints,
which operate directly on measurements associated with the
stimuli in a condition, soft meta-constraints serve to con-
strain the differences that exist between constraints them-
selves. Meta-constraints are useful in some instances when
combinations of soft constraints and their respective costs
do not correctly express the optimal pattern of relationships
that should exist among the conditions. These meta-
constraints also serve as a standardized means of reprioritiz-
ing the relative importance of other constraints that could
otherwise require more fine-tuning by the user. Currently,
two types of meta-constraints have been implemented: cost-
matching meta-constraints and conditional cost-matching
meta-constraints.

Cost-matching meta-constraint The first type of meta-
constraint bears a strong similarity to the simple soft constraint
used to minimize group-level differences on a particular mea-
sure. The main difference is that the measurements contribut-
ing to the meta-constraint have been substituted with the costs
associated with two other constraints. The primary use of cost-
matching meta-constraints is to provide an additional incen-
tive for all constraints to be satisfied to the same degree. This
type of behavior usually falls out of the normalization proce-
dure and cost functions naturally but can depend on the dis-
tributions of the variables to be matched and the particular set
of constraints that must be optimized.

One situation in which a cost-matching meta-constraint
may be beneficial is to ensure that a group of soft distance

Behav Res

constraints that all maximize differences end up maximizing
these differences to the same relative degree. One case in
which this does not occur naturally is when the maximal
differences that can be achieved for one constraint are pos-
sible only by minimizing the differences on another con-
straint. This is a frequently encountered issue in factorial
designs that cross correlated variables, such as when trying
to identify items for use in a 2 x 2 factorial design that
crosses effects of length with effects of frequency. In this
case, the correlation between the two variables reduces the
extent to which each individual constraint can be satisfied.
Instead, maximizing one constraint will tend to also lead to
the minimization of the other (e.g., when attempting to
select long/high-frequency words, increasing the values on
one variable tends to reduce the values on the other). Be-
cause costs are typically squared and increasingly large
costs result for the same absolute increase in the difference
between two conditions, the optimal (lowest cost) set of
items may, in fact, be a set that maximizes one difference
while actually minimizing the other (despite both constraints
stipulating that both differences should be maximized).

This problem can be rectified, however, by stipulating
that the two constraints must both be minimized to the same
degree. Expressed as a general cost function that minimizes
the differences between the costs of constraints O and O,
this meta-constraint can be written as the difference between
the current cost associated with the two constraints with the
addition of the standard weight and exponents:

Owmurcr (01, 02, b, n, d) = 100b(|dO; — O1])" (8)

An additional scaling parameter, d (default 1.0), allows
for O; to be matched to a multiple of O, (e.g., so that O,
should be satisfied only half as well as O,, in a case where it
is more important to ensure that O, is well satisfied). Fur-
thermore, the equation also contains a constant multiplier of
100 because, without such a multiplier, the values of the
meta-constraint tend to be on the same order of magnitude
as the simple constraints over which they operate. Given
that meta-constraints are typically applied when the simple
constraints themselves are insufficient to adequately charac-
terize the desired optimization, we have found that a stron-
ger pressure to satisfy the meta-constraints is required and
that the multiplier of 100 is sufficiently large to robustly
provide such a pressure, without overly dominating overall
cost as the optimization progresses. Notwithstanding these
details, this new cost function bears a strong similarity to the
cost function for minimizing differences between two mea-
sures in Eq. 2.

With the addition of this constraint, having a very small
cost for one constraint and a very large cost for another will
be penalized severely, whereas satisfying both constraints to
the same extent results in no penalty. This shifts the lowest

achievable cost value back toward the state where both
constraints are satisfied to an equal degree. The degree of
importance placed on ensuring that both of these constraints
are equally satisfied can be emphasized by increasing the
weight and/or exponent of the equation, as usual. However,
the default parameter values typically produce quite a strong
pressure to avoid egregious differences between two costs.

A second case that necessitates the use of a cost-matching
meta-constraint involves maximizing differences between
more than two conditions that span a range of values in a
multilevel design—for example, when creating low-,
medium-, and high-frequency conditions that are equally
spaced across a range of word frequencies. Without a
meta-constraint, the lowest possible cost is achieved when
two of the conditions have the same mean frequency and the
third is maximally different.

To illustrate this concretely, imagine that word frequen-
cies are bounded between 1 and 11 and that the low- and
high-frequency conditions have means equal to these lower
and upper bounds, respectively. Without a meta-constraint,
the putative medium-frequency condition would actually
lower cost the most by also having a mean of 1 or 11, rather
than a mean of 6 (we assume a mean of 1 in what follows).
This is because the decrease in the cost associated with
being very far from one condition [medium/high cost:
—(10%) = —100] combined with the cost of being very close
to another condition [low/medium cost: —(0%) = 0] results in
a lower overall cost (—100) than if the medium condition’s
mean were located at the midpoint (6) between the low and
high distributions [-2(5%) = —50]. A cost-matching con-
straint can overcome this problem by requiring that the cost
associated with the difference between the low- and medium-
frequency conditions be equal to that between the medium-
and high-frequency conditions. The meta-constraint will be
minimized when the three conditions are equally spaced
{2[(-25)-(—25)]* = 0; yielding a total cost of =50} and max-
imized with two conditions of equal means and a third condi-
tion separated from the first two [(—100 — 0)* = 10000;
yielding a total cost of 9,900]. An example of the successful
application of this type of constraint structure is described in
the examples section of the main text.

Note that in the previous discussion, we have focused on
instances of matching the degree to which constraints that
maximize differences are satisfied. This was intentional be-
cause, in the case of minimizing differences, the desired
behavior is already largely accomplished by the cost-
matching constraint: As the difference between the measures
being compared decreases, there is a diminishing return on the
overall decrease in cost as cost asymptotes toward a lower
bound of zero. This behavior can nevertheless be enforced
more strongly via a cost-matching constraint, but it is more
likely that these types of constraints will be more useful in the
former context. In both cases, however, the two constraints

@ Springer

Behav Res

being matched are both either difference minimization or
difference maximization constraints; these two types generally
should not be mixed. Instead, a conditional match meta-
constraint is usually more suitable in those instances.

Conditional cost-matching meta-constraints Conditional
cost-matching meta-constraints are a variant of the basic
cost-matching meta-constraints that seek only to match the
costs of two constraints when one of the constraints has not
been satisfied. The primary use for these constraints is to allow
the maximization of differences between variables to occur
only if all of the differences to be minimized have been
eliminated. This is the case when it is critical that there
be virtually no differences on some measurement but
there is still a desire to maximize the differences on
another constraint. As for the standard cost-matching
meta-constraint, this type of constraint satisfaction often
occurs naturally but may require an additional pressure
in some circumstances—for example, when relatively
small increases on the differences to be minimized can
lead to very large differences on the differences to be
maximized. A pressure that prevents such behavior

could be induced by adjusting the weights or exponents
of the different cost functions, but these adjustments are
likely to be problem specific. Conditional cost-matching
meta-constraints are a more general solution to this
problem.

A concrete example of a situation that might benefit
from a conditional cost-matching constraint would be in
the selection of stimuli for an experiment on the effects
of word imageability (i.e., how easy it is to picture the
meaning of the word in the “mind’s eye”; Paivio,
Yuille, & Madigan, 1968), using a low- and a high-
imageability condition. Generally, effects of imageability
are fairly weak relative to other effects, such as word
frequency, so it would be desirable to identify items that
are maximally different in terms of imageability, provid-
ed that there is no difference in frequency. A cost
function that allows only differences for a constraint to
be maximized, O,.4x, conditional on the differences for
another constraint being successfully minimized, Oz,
can be written as a function of the costs associated with
these constraints and of the standard weight, exponent,
and scaling parameters:

Oconaviarcr (Ouvan s Omux, byn, d) =
0,

IOOb(\/ldOMAX — OMIN|OMIN) s if Oyux <0 (9)

if Opyy >=0

The square-root component of the equation serves to keep
the conditional matching function on roughly the same scale as
the standard cost-matching function (see the cost-matching
meta-constraint description for details on the other parameters).
As long as differences on the measurement to be minimized
exist, Oyyy Will be greater than zero, and there will be a
pressure to reduce the differences that a simple constraint
attempts to maximize. As O,z is reduced, this pressure is
gradually removed, and O,y becomes a free parameter that
the simple constraint will lower as much as is possible. O,y
thus approximates a conditional gating function. The upper
bound of 0 when O,y is greater than 0 is included to prevent
undesirable behavior that is possible under this condition.
Specifically, when O,y is greater than 0, without this bound,
the desire to minimize the |dOy,x — Opgn| component of the
equation would effectively pressure O,y to maximize the
distance between the two conditions in the direction opposite
to that intended, until O,,,x was as large as Oy .

Hard constraints
Hard constraints are a special type of constraint that evaluate,

in a true/false fashion, whether an item’s value on a particular
dimension satisfies the constraint. These constraints take

@ Springer

precedence over the soft constraints and serve to exclude
items that do not meet their requirements from the samples
used to fill a condition. Hard constraints can be used if these
constraints are known and are of a fixed value for the different
variants of an optimization that a user might intend to run.

In the case that a user forces items to be initially placed in
a sample that violate these constraints (e.g., by reading in a
list of existing items for one condition), hard constraints will
calculate a cost penalty such that every time the constraint is
violated, a penalty of 1 is added. The total cost associated
with hard constraints is accumulated in a special “total hard
cost” pool, and the algorithm always attempts to reduce
“hard costs” prior to reducing “soft costs.” This allows for
hard constraints to be optimized first.

Hard-bound constraints The hard bound constraint serves
to constrain the value of a particular variable in a condition
to fall within an upper or lower bound. This type of con-
straint can be useful in making minor adjustments to the
items that can be included in a condition after examining the
performance of an initial optimization without needing to
filter out data outside of the software. Hard-bound con-
straints can also be used to speed up the optimization when
drawing items for multiple conditions from the same

Behav Res

population and trying to cover different ranges of values of a
variable. For instance, a low- and high-frequency condition
might both sample from the same pool of words. In this case,
the exact lower and upper bounds for these conditions may not
be known in advance and should, therefore, be left for the
optimizer to determine on the basis of how frequency differ-
ences can be maximized without violating other constraints.
Rather than splitting a population into separate high- and low-
frequency subpopulations, a hard constraint could be imposed
to help reach this goal by setting some conservative bounds on
the two conditions. This would limit the attempted swaps to
not include items that would clearly never be part of the
“optimal” sample without interfering with the discovery of
the optimal separation point between the two groups.

Appendix 2
Tutorial and details for the ME95 SOS optimization

Here, we describe in detail the process of running an optimi-
zation in SOS. All optimizations in SOS can be accomplished
simply by pointing-and-clicking within the graphical user
interface (GUI), which is launched by default in the stand-
alone versions of the software or by the sos_gui() command in
MATLAB (see Fig. 3). However, users may execute the same
commands by writing a simple script file in a text editor, and
our example focuses on these text-based interactions with

SOS. Creating these scripts is facilitated by having the SOS
GUI display the script commands associated with GUI-
triggered events. Scripts can subsequently be loaded and run
from the GUI or, for users wanting to take advantage of SOS’s
advanced functionality, within MATLAB.

As our detailed example, we will examine the use of SOS
to create a set of stimuli superior to those discovered in
MED95, Experiment 2. This experiment studied the effects of
word frequency in the absence of several confounding var-
iables and involved 24 pairs of high- and low-frequency
words that differed on frequency while being matched on
AoA, length (in letters), and imageability. For use with SOS,
we recreated the populations from which ME95 selected
their stimuli. Words with Kucéera and Francis (1967) fre-
quencies greater than 110 per million made up the high-
frequency population, and words with frequencies less than
10 per million made up the low-frequency population.

First, we will go over the commands that set up and
run a greedy optimization in SOS. Then we will show
how to calibrate and run a stochastic optimization. In this
particular case—and in many cases researchers may en-
counter—the greedy version of the algorithm performs
very well and can, in fact, solve the target optimization
problem to a greater extent than can the stimuli reported
in ME95. Only in more complex cases or when an
extremely optimized set is desired may a stochastic opti-
mization be required. However, to demonstrate the func-
tionality of SOS and the way in which to set up a
stochastic optimization, we have nevertheless included it

& sos [EE—5)
Untitled 3 ~
[Run seriet.. | [Set random seed
Population- — — Optimizer (cont'd) — Optimzer (cont'd)
[create.. | [Retresh ist] — Constraint: — Display f visusization -
Active v Create [Dispiay cost | [Createpiots |
[HARD: S06T SRS N S etaCost percenti.|
b= ["Herdbound | [1-sample distance] [match cost
Sample et (222 - —Wiriting linked populations / samples:
[create.. | ([wirte sampies | [irte popuiations | [Wire a1 5&P |
Active v [Match Correlation | -
[Link 1o active Pop. | Initialize Jpmzaion confto:
.-) | hdcost | Nurmber of Rerations:
S (bkank = use default)
[Calculate overiap | Visualize
1
 Optimizer - - Rofrosh dst| — OPTIMIZE STOP
[Ccreate.. [Retresh ist Ertiopy, Consiraint | \Bks) :
Active x| Statistical test
— Samples and swapping: - j Create
Add active sample | single [1nsepencessPares | [Match Correlation |
- . [Match Uniform |
| Neighbor Selection | Mode: randomPopulationandSa... = Run
[int fl Samples | [Normaiize data | | Runstatstests | Report style: |short =)
Temperature Annealing Optimization history
Greedy | [Exponential decay | e { e P .
[numsteps | [_Enable buttering | Command Line kntertace
— —_— S

Fig. 3 The main window of the SOS graphical user interface. The process of running an optimization generally flows from top to bottom, left to right

@ Springer

Behav Res

as part of this example. Furthermore, to demonstrate how
to calibrate a stochastic optimization from information
garnered from an initial run of a greedy optimization,
we have imposed strict limits on the greedy optimization,
so that it artificially ends prematurely.

The script file for this example and all of the realistic
examples reported in the main text are available through the
online user manual and may be useful as templates for
similar optimization problems.

Creating the samples and population Before starting to work
in the SOS software proper, the files that contain the population
data need to be formatted in a way that SOS recognizes. In this
case, we have two such files: a high-frequency population and a
low-frequency population. The items need to be in tab-
delimited columns, with one row corresponding to one item.
Data sets containing missing values are currently not supported.
Each column should also include a label, or header, at the top of
each column so that it can be referred to easily later (although
SOS will automatically label the columns if headers are not
specified). Additionally, although SOS attempts to auto-detect

highFreqgPopulation =

"highFreqPopulation’,

lowFregPopulation =

"lowFregPopulation’,

population ('Exp2HighFregPopulation.txt’,

"isHeader’,

population (’Exp2LowFreqPopulation.txt’,

"isHeader’, true,

the type of information present in each column (i.e., words
or numbers), users can include this formatting information
explicitly by placing a vertical bar (“/”) after the column
name and either an “s” indicating word/nonnumeric infor-
mation (strings) or an “f” indicating that the column contains
(floating-point) numbers. For example, the first three col-
umns and two rows of our high-frequency population file
appear as follows:

word|s AoA|f KFfrequencyl|f

act 3.19 237

Once the data files have been formatted, the SOS soft-
ware can be launched, and the data can be read in and used
to create populations and samples. To do this, we first create
the populations from which the optimized stimuli will be
drawn. In this case, we are using as our populations two text
files that contain high- and low-frequency words according
to the constraints imposed by ME95 and that contain header
and formatting information.

"name’,
true, ’isFormatting’, true);
"name’,

"isFormatting’, true);

The population command creates a new population
called “‘highFreqPopulation’” from our text file,
“‘Exp2HighFreqPopulations.txt’.” Because the columns
in this file are labeled with headers and formatting infor-
mation, we have set the “‘isHeader’” and “‘isFormatting’”’
parameters to “true.” In a different scenario, a researcher
may want all lists of words to draw from the same popu-
lation. In fact, in the present example, we could have used

a single population of words and then, by using hard-

highFregSample = sample (24,

"outFile’,

"name’,

bound constraints, imposed the same frequency cutoffs
imposed by ME95 (see Appendix 1). However, we opted
to keep our procedure as similar to that in ME9S5 as possi-
ble, and so, we created two separate populations of words.
Additional examples in the main text and user manual
describe successful optimizations with this alternative con-
straint and population structure.

After these populations have been created, we can create
the samples that we want to optimize.

"highFreqgSample’,

"highFregqSampleGREEDY.txt’);

highFregSample.setPop (highFregPopulation);

@ Springer

Behav Res

999

Above, a sample of 24 words called “‘highFreqSample’” is
created using the sample command. When the optimization
ends, this sample can be saved to a file called “‘highFreqSam-
ple.txt’.” We then link this sample with the population from
which its words will be drawn (““highFreqPopulation’’). Sim-

Exp2GreedySO0S =

"statInterval’,

With the sos command, a new instance of an SOS opti-
mization with the name “‘Exp2GreedySOS’” is created.
There are several advanced options that may also be set
with this command (e.g., “‘reportinterval’,” “‘stopFree-
zelt’,” “‘statInterval’; see the user manual for details); if
not set, however, these options take on their default values.
In this case, we have instructed SOS to provide updates and
statistical tests more frequently during the optimization pro-
cess than the default values. Additionally, to later demonstrate
the configuration of a stochastic optimization, we have set the
number of iterations after which the algorithm will end if cost
remains unchanged (“‘stopFreezelt’) to be artificially low
and changed the block size over which Acost will be recorded
when calculating the distribution of cost changes to the same
value. As a result, the greedy optimization will end early but
will still generate a Acost distribution corresponding to that
expected in a minimum—that is, only positive Acost values—
during the last block of iterations.

999

fregConstraint =
"name’,
"fnc’,
"samplel’,
"s1ColName’,

"S2ColName’,

"paired’, true);

sos (' reportInterval’,

" freqConstraint’,
"orderedMax’,

lowFreqgSample,

ilar commands are repeated to prepare a low-frequency sample,

EIET)

“lowFreqSample’.

Creating the optimization At this point, we can create the
optimization itself.

100, ’stopFreezelt’, 100,

500, "blockSize’, 100);

Once the optimization has been created, we explicitly link the
samples to be optimized (i.e., “‘highFreqSample”” and ““low-
FreqSample™) to the optimization (i.e., “‘Exp2GreedySOS’”)
using the addSample command—for instance, to add the high-
frequency sample,

Exp2GreedySOS.addSample (highFreqgSample) ;

Adding the constraints Next, we provide the optimizer with
knowledge of the properties we want the final samples to
have; in this case, we want the samples to differ on fre-
quency and be matched on AoA, length, and imageability.
To give the optimizer this knowledge, each of these prop-
erties is translated into a constraint and an associated cost
function for operationalizing this constraint. Using the
addConstraint command, we can add to the optimization
the first constraint: to maximize the differences between the
lists on frequency.

Exp2GreedyS0OS.addConstraint (

"constraintType’, ’'soft’,

"stat’, 'mean’,

"sample2’, highFregSample,

"KFfrequency’,

"KFfrequency’,

The type of constraint we are using here is “‘soft’” (see
the user manual for other options). The “‘fnc’” parameter is
set to “‘orderedMax’” to instruct the optimization to maxi-
mize the differences between the samples on the target

statistic, which has been specified as the ““mean’” via the
“‘stat’” parameter. In the present context, this constraint
ensures that “‘samplel”” (““lowFreqSample’”’) will have low-
er average frequency than “‘sample2’” (“highFreqSample’”).

999

999

@ Springer

Behav Res

Next, we specify the names of the samples and the names of

the variables (columns) within each sample to which this
constraint pertains. Because we want to make sure that each
pair of words differs as greatly as possible on frequency (and
because ME95 adopted a pairwise selection procedure),
“‘paired’” is set to “true.” Advanced parameters (e.g.,
“‘weight’” and “‘exponent’”) may also be configured using
the addConstraint command (see the user manual for

133 999

fregConstraint
"name’,
"fnc’,
"samplel’,
"s1ColName’,
"S2ColName’,

"paired’, true);

" freqConstraint’,
"orderedMax’,

lowFreqgSample,

details). If left unspecified, as in the present example, they
will be set to their default values.

Next, we use the same command to create the second
constraint: matching the highFreqSample and lowFreqSample
on AoA. This involves using the same command to add a new
constraint but setting the “‘fnc’” parameter to “‘min’,” as well

as changing the variables over which this constraint should
operate.

Exp2GreedyS0OS.addConstraint (

"constraintType’, ’'soft’,

"stat’, 'mean’,

"sample2’, highFregSample,

"KFfrequency’,

"KFfrequency’,

The remaining two constraints, minimizing the pairwise
differences between the two lists on length and imageability,
follow this same format.

Finally, we have also added three meta-constraints to con-
strain the costs associated with the simple constraints. In
particular, these simple constraints consist of one maximiza-
tion constraint (frequency) and three minimization constraints
(AoA, length, and imageability). While the cost values asso-

ciated with minimization constraints have a lower bound of

zero, a maximization constraint’s cost does not have a lower
bound and can become negative. By virtue of this difference

metaAoAAndFreqConstraint
"name’,
"constra
"fnc’,
"constra

"constra

between the two kinds of constraints, one or more maximiza-
tion constraints can sometimes dominate the cost function and
cause other constraints to be more poorly satisfied (as assessed
in a pilot optimization without these meta-constraints). This
type of problem can be avoided with the use of meta-
constraints. One type of meta-constraint, ““matchCostNot-
Min’,” effectively prevents a maximization constraint from
being optimized until a minimization constraint has been
satisfied. In the present example, we will use three “‘match-
CostNotMin’” meta-constraints, one to pair each minimiza-
tion constraint with the “‘orderedMax’” frequency constraint.

999

Exp2Greedy SOS.addConstraint (...

"metaAoAAndFreqgConstraint’,

intType’, ’meta’,

"matchCostNotMin’,

intl’, AoAConstraint,

int2’, frequencyConstraint);

To create a “‘matchCostNotMin’” meta-constraint, we
change “‘constraintType’” to ““meta’” and “‘fnc’” to ““match-
CostNotMin’.” Then, we enter the names of the two constraints

999

@ Springer

to be matched. Importantly, when using “‘matchCostNotMin™”’
constraints, the name of the minimization constraint must
occur as ‘constraintl’. The format for creating the remaining

Behav Res

two meta-constraints that equate the frequency constraint to the
length and imageability constraints is the same as above.

Now that we have created the optimization and the con-
straints, we can prepare to run the optimization by initially
filling the two sample lists. With the initFillSamples com-
mand, items are selected randomly from the populations to
fill our high- and low-frequency samples.

Exp2GreedyS0S.initFillSamples () ;

Statistical tests Optionally, a researcher may define statis-
tical criteria for the optimization. If these criteria are met,
the optimization will end. Because statistically significant

differences or, alternately, nonsignificant “matches” be-
tween samples are often all a researcher wants to achieve
(and are the kind of evidence presented to demonstrate that
the stimuli were well suited for studying the target question
when results are published), further optimization may be
superfluous once reasonable statistical criteria have been
met. Furthermore, as is discussed in more detail in the
user manual, additional processing to the point of reach-
ing a cost minimum may constrain the number of sets
of items that can satisfy the constraints, thereby inter-
fering with the generalizability of the results.

In the present example, each constraint is associated with
a single statistical test. In the case of word frequency, we
would like to ensure that the means of the two samples are
statistically significantly different, as follows.

Exp2GreedySOS.addttest ("name’, ’freqTest’,

"type’, 'paired’,...

"samplel’, highFregSample, ’sample2’, lowFregSample,

"s1ColName’,

"desiredpvalCondition’,

"desiredpval’, 0.05);

"KFfrequency’, ’'s2ColName’,

"KFfrequency’,

=",

Using the addttest command, we can associate this statis-
tical test with the current SOS optimization. Because we are
matching or maximizing the differences between the two lists on
a pairwise basis, the type of #-test we will use is a paired samples
t-test between the ““KFfrequency’” columns in ““highFreqSam-
ple’” and ““lowFreqSample’.” We want these two samples to be
significantly different on word frequency, so the p-value
returned by the #-test should be less than or equal to .05 to stop
the optimization. The parameters ““desiredpvalCondition”” and
““desiredpval” together specify this statistical criterion.

In the case of the AoA constraint (as well as the length and
imageability constraints), a different statistical criterion is
required to infer that the samples are highly similar to one
another, and, unlike statistical significance for rejecting the
null hypothesis, there is no gold standard p-value for means
that do not differ. For this example, we assume that the two
lists are adequately matched if the p-value returned by a paired
samples #-test is greater than or equal to .5. This value of .5 is
somewhat arbitrary, and other researchers may wish to match
to a greater (e.g., p-value of .9) or lesser (e.g., p-value of .3)
degree, depending upon the problem at hand and existing

standards in their fields. By comparison, in Experiment 2,
MED95 were able to achieve “matches” of p = 1.0 for word
length, p = .20 for AoA, and p = .01 (i.e., a failed match) for
imageability, using manual stimulus selection.

Configuring and running the optimization In the last por-
tion of this example script, we will explain how to run both
greedy and stochastic optimizations; the steps for both up to
this point are the same. As a first step for all researchers, we
recommend running a greedy optimization. Many problems
are solved with this type of optimization, and it generally
takes less time than a stochastic one. Additionally, stochas-
tic optimizations are calibrated with information calculated
during a run of the optimization in greedy mode, so a user
does not lose any time from beginning a problem in this
way. In the case of our ME95 example, we show that,
although the greedy optimization finds sufficiently optimal
high- and low-frequency sets of words, the stochastic ver-
sion of SOS performs even better.

To visualize the progress of the optimization, we have
included an optional command to create the graphs associated

@ Springer

Behav Res

with various critical measures during the optimization, such as
cost and the p-values associated with each statistical test.

Exp2GreedySOS.createPlots();

Greedy optimization The optimizer defaults to greedy op-
timization; that is, it always swaps to items that result in
lower overall cost, and the optimization never behaves
stochastically. We are therefore ready to run the greedy

Initializing Constraints

Hard Constraint Total: O
Soft Constraint #:1 Cost:
Soft Constraint #:2 Cost:
Soft Constraint #:3 Cost:
Soft Constraint #:4 Cost:
Soft Constraint Total: 1.1455
Meta Constraint #:1 Cost:
Meta Constraint #:2 Cost:
Meta Constraint #:3 Cost:
743.104

Meta Constraint Total:

TOTAL COST (soft + meta):

optimization by clicking the ‘Optimize’ button in the GUI
(or typing Exp2GreedySOS.optimize() at the command
prompt, although the command prompt interface does not
currently allow for ad hoc stopping and starting of the
optimization by the user). At the beginning of an optimi-
zation, SOS calculates the initial value of cost—the cost
associated with the items that have been randomly selected
to fill our high- and low-frequency samples—and displays
the results.

-1.6583 freqConstraint
0.62044 AoAConstraint
1.1733 lengthConstraint

1.01 imageConstraint

141.3792 metaAoAAndFreqConstraint

332.2222 metaLengthAndFreqConstraint

269.5026 metalImagAndFreqConstraint

744.2495

This display reveals that the three minimization con-
straints are associated with roughly equal costs before the
optimization begins. Because of the cutoffs we imposed on
the high- and low-frequency lists outside of the optimiza-
tion, the frequency maximization constraint is already asso-
ciated with a negative cost value, indicating that the low-
frequency list already has lower pairwise frequency than the
high-frequency list. Finally, the values of the meta-
constraints are by design approximately two orders of mag-
nitude larger than those of the soft constraints; in practice,
we have found that this implements a reasonably strong but

@ Springer

not overwhelming pressure for these constraints to be well
satisfied.

Next, the SOS software begins to print out the values of
cost after a specified number of iterations have passed; in
this case, we set the algorithm to report the cost value every
100 iterations. Along with this cost information, the esti-
mated time remaining in the optimization (assuming that the
maximum number of iterations—in this case, 10,000—has
been reached) and the percent of the optimization completed
are also displayed. Periodically, SOS assesses whether the
user-specified statistical tests have passed their criteria.

Behav Res

Optimizing for 10000 iterations

Iteration Cost % Complete
1) 744.2495 0.01%
100) 144.85112 1.00%
200) 76.94003 2.00%
300) 52.11457 3.00%
400) 37.08432 4.00%
500) 32.87713 5.00%

Running all stat tests:
UserHyp:
t[paired] (23) =
m(2) = 4.2083 (se=2.0784)
UserHyp:
-0.40505, p = 0.68918 p-des:

(se=0.018688)

UserHyp:

t[paired] (23) = 1.4968, p =
5.5833 (se=0.039774)

UserHyp:
t[paired] (23) =

4.8396 (s5e=0.019902)

15.5669, p = 1.049e-13 p-des:

FAIL; highFreqgSampleAoA - lowFregSampleAoA:

0.5 m(1) =

0.14803 p-des:

-1.1709, p = 0.25362 p-des:

Elapsed Remaining
Is Im 10s

Is 2m

2s Im 31s

2s Im 17s

3s Im 9s

3s Im 4s

PASS; highFreqgSampleKFfrequency - lowFregSampleKFfrequency:

0.05 m(1) = 162.7083;
t [paired] (23) =

3.8988; m(2) = 3.9358

PASS; highFreqgSampleletters — lowFregSampleletters:

0.5 m(1) = 5.875; m(2) =

FAIL; highFreqSampleimagery - lowFregSampleimagery:

0.5 m(1) = 4.7254; m(2) =

Over the first 500 iterations of the optimization, cost has
decreased rapidly. The frequency difference between the
two samples is statistically significant, and the two samples
are matched pairwise on length to a greater degree, in fact,
than we had required. However, the statistical tests reveal
that the high- and low-frequency samples are still relatively
different on AoA and imageability. Here, an example of a
“full” statistical report is shown, but a “short” report is
actually the default. The choice of report style may be

selected from the GUI or with an optional argument when
creating the SOS object (see the online manual for details).

This greedy optimization continues for only 81 more iter-
ations. At this point, the optimization ends because cost has
“frozen” and remained unchanged for our prespecified num-
ber of iterations (100). This number was selected to artificially
stop the greedy version, to allow us to also demonstrate the
method used to configure stochastic optimization; increasing
the number of iterations during which cost remains unchanged

@ Springer

Behav Res

before stopping provides an increasingly confident measure
that cost has descended into a (potentially local) minimum. In
addition to stopping due to frozen cost, other possible termi-
nation messages include “all statistical test passed defined
criteria” or “the [user-specified] maximum number of itera-
tions has been reached [default of 10000].”

When this optimization ends, the high-frequency sample has
a significantly higher frequency than does the low frequency
sample, paired #23) = 15.57, p = 1.01 x 10"'*. On the other
hand, the two lists do not differ significantly on AoA, paired
#23)=-0.41, p=.69, word length, paired #23)=1.50, p= .15,
or imageability, paired #23) = —1.17, p = .25. Using even the
intentionally limited greedy version of SOS with a small freez-
ing interval resulted in arguably better matches than those
selected by ME95 by hand—and, we assume, in far less time.

Additional insight into the progress of the optimization can
be obtained by examining the plots produced during the opti-
mization. The plots associated with the current optimization are
shown in Fig. 4. The top plot displays the value of temperature
throughout the optimization. Because greedy mode is equiva-
lent to setting temperature to zero for the entire optimization,
the temperature plot shows no fluctuations. The next plot dis-
plays the value of cost and shows a sharp decrease at the
beginning of the optimization, followed by very gradual prog-
ress toward the final low cost value. The third plot displays the

Acost value associated with a swap at each iteration for which
data are being plotted and gives a sense of the variability and
sign of the cost differences encountered after an attempted swap.
For example, large Acost variability indicates high variability in
the optimality of the current set, relative to the swap set, and a
large number of positive Acost values could indicate that the
optimization is becoming stuck in a minimum. The fourth plot
shows the probability, p(swap), of moving to a neighboring
(swap) item, averaged across all of the iterations in a block
(by default, of size 1,000). Low p-values on this plot indicate
that the algorithm is not moving to neighboring states and
provides additional evidence that it could be becoming trapped
in a minimum. High p(swap) values indicate that the algorithm
is swapping frequently between states, a scenario encountered
during the initial stages of the stochastic version of the algorithm
or when most items in the population could be selected to satisfy
the constraint to the same degree. The last plot shows the p-
values associated with the four statistical criteria defined for this
example on the basis of the order in which they were created.
The ‘Names’ button shown on the left of the figure displays the
full name of the statistical tests in an overlay, not shown. In our
present example, the p-value for Test #1 (frequency) remains
low throughout the optimization. The other three tests, associ-
ated with the minimization constraints, gradually move to the
final state where all p-values are greater than .05. We can see

x10°
o
2
o
2 05 |
IS
2
0 - * * : | |
(omes |
% 10— 7
8 o
3
‘© -10— |
©
-20 |
1 | | ‘ ‘
a
®©
S |
@
0 ! S —
1 ! | | ‘ ‘
Test #1 \\
Test #2 0.5 : 7
Test #4 0 l -m
[t]— 0 100 200 300 400 o0 600
A ;
mlel
o | ! _32.3??13 il

Fig. 4 Plot generated by the SOS software of values for several
metrics throughout the course of the greedy optimization. The topmost
plot displays temperature, the second plot displays cost, the third plot

@ Springer

displays Acost, the fourth plot displays the likelihood of swapping to a
neighboring item, p(swap), and the last plot displays the p-values for
the statistical tests. See the text for details

Behav Res

that Test #2 (AoA) remained high throughout the optimization,
while more time was required to minimize the constraints
associated with Tests #3 (length) and #4 (imageability).

Stochastic optimization Next, we demonstrate the use of
the stochastic version of SOS. To do so, we have used
the same example case from ME95 and the same basic
script and initial sample of stimuli. In fact, to ensure
that greedy and stochastic runs are initialized identically,
we used the setSeed function to initialize each with the
same random number (not shown in the first example),
meaning that the high- and low-frequency samples will
be filled with the same initial items. Within the script,
however, we have changed the annealing schedule to
use exponentially decaying temperature annealing in-
stead of the default greedy mode (see the user manual
for details). Before reviewing how this is accomplished,
however, it is necessary to first collect some information
to allow for the calculation of pDecrease, a parameter in
the exponential decay function that specifies the next
temperature level as a smaller proportion of the current

temperature. The goal here is to identify a value of
pDecrease that gradually moves from a high tempera-
ture, at which swaps occur at random, to a lower
temperature that would allow for a small number of
swaps to still occur when the algorithm enters a cost
minimum. This will allow the algorithm to gradually
decrease cost and avoid becoming stuck in a local
minimum as it does so.

To determine the appropriate value of pDecrease for an
optimization, we offer the following strategy. All optimiza-
tions should begin by attempting success through a greedy
run of SOS. If a satisfactory solution is not found, users
should then extract some additional information from the
greedy optimization before beginning a stochastic one. Spe-
cifically, in the previous optimization, the command
Exp2GreedySOS.deltaCostDeciles will produce the distri-
bution of Acost values from the last iteration block in the
form of a cumulative average (block size is 1,000 by default,
but we have changed it here to match our artificially low
“‘stopFreezelt’” of 100). In the present example, the delta
cost deciles are as follows:

995

Deciles for deltaCost in last block:

(100 iterations total;

0: +0.61125129

10: +3.87051217

20: +6.11557827

30: +6.95036521

40: +8.88808587

50: +10.09334703

60: +11.16903585

70: +13.83542952

80: +15.75305910

90: +19.65537253

100: +32.39223807

97.5th - 2.5th percentile deltaCost:

numIt < blockSize in first block)

29.10367106

@ Springer

Behav Res

Now that we know the distribution of changes in cost
during the final stages of a greedy optimization, when it
potentially becomes stuck in a minimum in which further
decreases are not possible, we can infer a “final” tem-
perature value that will still allow for some cost-
increasing swaps to occur for some percentage of itera-
tions when the optimization approaches this minimum.
To determine the initial value of temperature, we next
run the optimization in stochastic mode for one block of
iterations; during this time, swaps occur at random. After
this block completes, we again display the Acost percen-
tiles (not shown). Armed with this information from
greedy and stochastic optimizations, we are able to con-
figure the exponentially decaying temperature function.
We have found that setting the upper (initial) temperature
of the optimization to the 97.5th — 2.5th percentile of
Acost values from the first block of stochastic trials
calibrates the algorithm’s initial temperature to a reason-
able initial value. Specifically, this value is sufficiently

expAnneal .maxpDecrease (667.49, 3.87,

high for most swaps to be made effectively at random
but is relatively stable across different optimizations that
are initialized with different random seeds (in those
instances, the increased variability of using the full range
of Acost values leads to substantial variability in the
estimates of pDecrease). We also recommend initially
using the 10th percentile of Acost values from the greedy
optimization as the lower (final) temperature. Choosing a
smaller or larger percentile for final Acost will lead to
faster or slower annealing, respectively, with faster
annealing settling more rapidly into a minimum, albeit
with a greater risk that this minimum is local and not
global. Finally, the calculation calls for the number of
temperature steps (decreases) that the algorithm will take
as it goes from the initial temperature to the final tem-
perature; we recommend at least 10 (and never less than 3,
since fewer steps are effectively no different than starting a
greedy search with different initial sets of items). Below, we
show the command that calculates pDecrease and its output:

10)

0.402508 is max pDecrease to ensure 10 steps during exp anneal

Subsequently, we use the following command to indicate
that we want to run a stochastic optimization and to set
pDecrease to the value we have calculated:

Exp2StochasticS0S.setAnnealSchedule (' schedule’,

"exp’, 'pDecrease’, .402508);

CER] 1133 995

This changes the optimization from “‘greedy’’ to “‘exp
(short for “exponentially decaying temperature annealing”).
With this same command, we have also set an additional
parameter that governs the rate at which temperature
decreases during the optimization, “‘pDecrease’,” to the
value we have just calculated.

Now that we have calibrated the stochastic optimiza-
tion, we are ready to run it. As in the previous greedy
example, the optimization begins by calculating the

@ Springer

initial value of cost; because the high- and low-
frequency samples are filled with the same items in
both, the initial cost values will be identical between
greedy and stochastic runs. Below are displayed the first
3,000 iterations of the optimization. Note that the max-
imum number of iterations has been changed here to be
larger than the default value to allow the optimization to
run for more iterations, as is generally required in sto-
chastic optimizations.

Behav Res

Optimizing for 1000000 iterations

Iteration Cost % Complete Elapsed Remaining
1) 744.24945 0.00% 1s 1h 57m 50s
1000) 3149.89991 0.10% 75 1h 54m 3s

1000) Annealing Equation calibrated,

667.4918

3

2000) 1753.88764 0.20 13s

changing temperature from Inf to

Ih 47m 11s

2000) p(thermEquil): 1.6257e-10 prevBlock m = 1871.7707 (se = 0.79726)
curBlock m = 1679.0243 (se = 0.51208)

3000) 1368.77390 0.30% 19s 1h 44m 28s

3000) p(thermEquil): 2.8947e-92 prevBlock m = 1679.0243 (se = 0.51208)

curBlock m 1244.0813 (se 0.37948)

Following the initial block of iterations in which temper-
ature is effectively set to an infinitely high value, the display
shows the completion of the calibration of the initial tem-
perature value, and the algorithm will gradually lower tem-
perature throughout the course of the optimization. A simple
way of doing so would be to simply lower temperature after
a fixed number of iterations have passed. However, we have
found that doing so is often suboptimal because the algo-
rithm will sometimes spend either too much time at high
temperatures, where swaps are mostly random, or too little
time at an optimal low temperature that allows for local
minima to be avoided reliably. Instead, the algorithm
employs a more sophisticated procedure for evaluating
when temperature should be lowered, referred to as an

7000) p(thermEquil):

1436.5575 (se

curBlock m 0.40568)

0.75543 prevBlock m

“assessment of thermal equilibrium.” A full discussion of
this algorithm is not necessary at present and is beyond the
scope of the present article (see the user manual for details).
In essence, however, this procedure lowers temperature only
once it appears likely that such a lowering of temperature
will not result in the algorithm’s becoming immediately
stuck in a local minimum. This can be approximated by
evaluating when cost does not change significantly across
subsequent blocks of trials.

Each assessment of thermal equilibrium lists the means
and standard errors of the cost values encountered in the
previous and the current blocks of trials and the probability
that these values are not equal. In our example, thermal
equilibrium for this 7} is not reached until 7,000 iterations.

1431.404 (se 0.33026)

7000) Thermal Equilibrium Reached — Dropping temperature from 667.4918

to 398.821

@ Springer

Behav Res

At this point, temperature is reduced according to the value
of pDecrease; in this case, temperature is decreased by ap-
proximately 40% whenever thermal equilibrium is reached.
Figure 5 displays the plots generated during the stochastic
version of this optimization and reveals additional information
about the procedure. During the early iterations, temperature
is set to a high value, and so the Acost values vary substan-
tially both positively and negatively because the algorithm is
effectively swapping to different items at random. This be-
havior is directly reflected in the probability of swapping to a
neighboring item, p(swap), which is equal to .5 for these early
iterations. Similarly, the statistical tests shown at the bottom of
the figure vary wildly from iteration to iteration. Eventually,
temperature begins to decrease, and, as a result, cost values
decrease and become more stable over time. Near the end of
the optimization, p(swap) has been reduced to near zero; at
this point, the algorithm is effectively swapping only to items
that strictly decrease cost. However, even at the end of the
optimization, the p-values from the statistical tests appear to
be changing; this result suggests that changing even a single
item may have a nontrivial impact on the statistics in this
particular optimization. After 210,000 iterations, the algo-
rithm stops because all of the statistical criteria have been
met. At this point, high- and low-frequency samples have
been selected that vary on frequency, paired #23) = 16.13,
p=4.92x10""* but not on AoA, paired #(23)=-0.68, p = .51,

length, paired #23) = 0.33, p = .75, or imageability, paired ¢
(23) = 0.39, p = .70. These results indicate that the stochastic
optimization identified a better set of items than did both the
greedy optimization and ME9S.

Assessing generalizability In SOS, we can also assess the
degree to which the final samples of stimuli are representa-
tive of the underlying population of stimuli. If, instead, they
are an idiosyncratic subset, we cannot make strong claims
about the generalizability of any experimental effects based
on inferential statistics. In the case of the high- and low-
frequency word lists, we ran five separate stochastic opti-
mizations until each passed the statistical criteria, yielding
five lists of high- and five lists of low-frequency items. We
then used the “calculate overlap” command [of the form
dataFrame.overlap(samplelrunl,samplelrun2)] to de-
termine how similar the resulting lists in each condition
were to each other. On average, the high-frequency lists
shared 12.92% (SD = 0.09) of their items, while the low-
frequency lists shared 7.5% (SD = 0.06) of their items.
These numbers suggest that the five optimal solutions were,
in fact, quite different from one another and that the algo-
rithm was not arriving at the same, unique solution each
time. Thus, we would expect any behavioral effects ob-
served with these stimuli to generalize to new sets of stimuli,
as well.

400
200~

temperature

deltaCost

p(swap)

Test #1
Test #2

Test #4

g

o s+ ¥ (NEETIN SUSTTHAN 5 227002

Fig. 5 Plot generated by the SOS software of values for several metrics throughout the course of the stochastic optimization. A more detailed

description of the plots is included in the caption for Fig. 4 and in the text

@ Springer

Behav Res

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning
algorithm for Boltzmann machines. Cognitive Science, 9, 147—
169.

Armstrong, B. C. (2007). Comprehending ambiguous words:
Computational and empirical investigations. Masters thesis,
National Archives of Canada.

Armstrong, B. C., & Plaut, D. C. (2008). Settling dynamics in distributed
networks explain task differences in semantic ambiguity effects:
Computational and behavioral evidence. In B. C. Love, K.
McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th
Annual Conference of the Cognitive Science Society (pp. 273—
278). Austin, TX: Cognitive Science Society.

Armstrong, B. C., & Plaut, D. C. (2011). Inducing homonymy effects
via stimulus quality and (not) nonword difficulty: Implications for
models of semantic ambiguity and word recognition. In T. S. L.
Carlson & C. Holscher (Eds.), Proceedings of the 33rd Annual
Conference of the Cognitive Science Society (pp. 2223-2228).
Austin, TX: Cognitive Science Society.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects
modeling with crossed random effects for subjects and items.
Journal of Memory and Language, 59, 390—412.

Balota, D., Cortese, M., Sergent-Marshall, S., Spieler, D., & Yap, M.
(2004). Visual word recognition of single-syllable words. Journal
of Experimental Psychology: General, 133, 283-316.

Beretta, A., Fiorentino, R., & Poeppel, D. (2005). The effects of
homonymy and polysemy on lexical access: An MEG study.
Cognitive Brain Research, 24, 57-65.

Binder, J., Desai, R., Graves, W., & Conant, L. (2009). Where is the
semantic system? A critical review and meta-analysis of 120
functional neuroimaging studies. Cerebral Cortex, 19, 2767—
2796.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision,
10, 433-436.

Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis:
A critical evaluation of current word frequency norms and the
introduction of a new and improved word frequency measure for
American English. Behavior Research Methods, 41, 977-990.

Bunn, E., Tyler, L., & Moss, H. (1998). Category-specific semantic
deficits: The role of familiarity and property type reexamined.
Neuropsychology, 12, 367-379.

Clark, H. (1973). The language-as-fixed-effect fallacy: A critique of
language statistics in psychological research. Journal of Verbal
Learning and Verbal Behavior, 12, 335-359.

Coltheart, M. (1981). The MRC psycholinguistic database. Quarterly
Journal of Experimental Psychology, 33, 497-505.

Cortese, M., & Khanna, M. (2007). Age of acquisition predicts naming
and lexical-decision performance above and beyond 22 other
predictor variables: An analysis of 2,342 words. Quarterly Jour-
nal of Experimental Psychology, 60, 1072—1082.

Cutler, A. (1981). Making up materials is a confounded nuisance, or:
Will we able to run any psycholinguistic experiments at all in
1990? Cognition, 10, 65-70.

Davis, C. (2005). N-WATCH: A program for deriving neighborhood
size and other psycholinguistic statistics. Behavior Research
Methods, Instruments, & Computers, 37, 65-70.

Gernsbacher, M. (1984). Resolving 20 years of inconsistent interactions
between lexical familiarity and orthography, concreteness, and poly-
semy. Journal of Experimental Psychology: General, 113, 256-28]1.

Gilhooly, K., & Logie, R. (1980). Age-of-acquisition, imagery,
concreteness, familiarity, and ambiguity measures for 1,944
words. Behavior Research Methods, 12, 395-427.

Gilhooly, K., & Logie, R. (1982). Word age-of-acquisition and lexical
decision making. Acta Psychologia, 50, 21-34.

Healy, M. J. R. (1968). Multiple regression with a singular matrix.
Journal of the Royal Statistical Society: Series C, 17, 110-117.

Hino, Y., & Lupker, S. (1996). Effects of polysemy in lexical decision
and naming: An alternative to lexical access accounts. Journal of
Experimental Psychology: Human Perception and Performance,
22, 1331-1356.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in
Boltzmann machines. In D. E. Rumelhart, J. L. McClelland, & the
PDP Research Group (Eds.), Parallel distributed processing:
Explorations in the microstructure of cognition. Vol. 1: Founda-
tions (pp. 282-317). Cambridge, MA: MIT Press.

Kiefer, J., & Wolfowitz, J. (1952). Stochastic estimation of the maximum
of a regression function. Annals of Mathematical Statistics, 23, 462—
466.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220, 671-680.

Kucera, H., & Francis, W. N. (1967). Computational analysis of present-
day American English. Providence, RI: Brown University Press.

Morrison, C., & Ellis, A. (1995). Roles of word frequency and age of
acquisition in word naming and lexical decision. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 21, 116-133.

Paivio, A., Yuille, J., & Madigan, S. (1968). Concreteness, imagery and
meaningfulness values for 925 nouns. Journal of Experimental
Psychology, 76, 1-25.

Patterson, K., & Plaut, D. (2009). Shallow draughts intoxicate the brain:
Lessons from cognitive science for cognitive neuropsychology.
Topics in Cognitive Science, 1, 39-58.

Raaijmakers, J., Schrijnemakers, J., & Gremmen, F. (1999). How to
deal with "The language-as-fixed-effect fallacy": Common mis-
conceptions and alternative solutions. Journal of Memory and
Language, 41, 416-426.

Rodd, J., Gaskell, G., & Marslen-Wilson, W. (2002). Making sense of
semantic ambiguity: Semantic competition in lexical access. Journal
of Memory and Language, 46, 245-266.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986).
Parallel distributed models of schemata and sequential thought pro-
cesses. In D. E. Rumelhart, J. L. McClelland, & the PDP Research
Group (Eds.), Parallel distributed processing: Explorations in the
microstructure of cognition. Vol. 2: Psychological and biological
models (pp. 7-57). Cambridge, MA: MIT Press.

Salazar, R., Plastino, A., & Toral, R. (2000). Weakly nonextensive
thermostatistics and the Ising model with long-range interactions.
European Physical Journal B, 17, 679-688.

Schilling, H., Rayner, K., & Chumbley, J. (1998). Comparing naming,
lexical decision, and eye fixation times: Word frequency effects
and individual differences. Memory & Cognition, 26, 1270-1281.

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime, Version
1.1 [Computer Software].

Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260
pictures: Norms for name agreement, image agreement, familiarity,
and visual complexity. Journal of Experimental Psychology: Human
Learning and Memory, 6, 174-215.

Stanovich, K. E. (1997). How to think straight about psychology (5th
ed.). Reading, MA: Addison Wesley.

van Casteren, M., & Davis, M. (2007). Match: A program to assist
in matching the conditions of factorial experiments. Behavior
Research Methods, 39, 973-978.

Watson, C. E. (2009). Computational and behavioral studies of normal and
impaired noun/verb processing. Unpublished doctoral dissertation,
Carnegie Mellon University.

Watson, C. E., & Chatterjee, A. (2012). A bilateral frontoparietal
network underlies visuospatial analogical reasoning. Neurolmage,
59, 2831-2838.

Woollams, A., Lambon Ralph, M., Plaut, D., & Patterson, K. (2007).
SD-squared: On the association between semantic dementia and
surface dyslexia. Psychological Review, 114, 316-339.

@ Springer

	SOS! An algorithm and software for the stochastic optimization of stimuli
	Abstract
	A manual heuristic for identifying optimal stimuli
	Problems with the manual heuristic

	Stochastic optimization of stimuli: A brief overview
	Stochastic optimization
	SOS performance on a range of optimization problems
	Comparison of SOS stimuli with manually selected stimuli in a two-level, one-way design
	A regression analogue and expansion of the one-way design used by Morrison and Ellis (1995)
	Performance of SOS on additional examples
	Categorical/ANOVA designs
	Other optimization problems

	Extended applications
	Using and modifying SOS
	Conclusion
	Appendix 1
	Implemented cost functions
	Soft constraints
	Hard constraints

	Appendix 2
	Tutorial and details for the ME95 SOS optimization

	References

