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 36 

Abstract 37 

 38 

Statistical learning is typically considered to be a domain-general mechanism by 39 

which cognitive systems discover the underlying distributional properties of the input. 40 

Recent studies examining whether there are commonalities in the learning of 41 

distributional information across different domains or modalities consistently reveal, 42 

however, modality and stimulus specificity. An important question is, therefore, how and 43 

why a hypothesized domain-general learning mechanism systematically produces such 44 

effects. We offer a theoretical framework according to which statistical learning is not a 45 

unitary mechanism, but a set of domain-general computational principles, that operate 46 

in different modalities and therefore are subject to the specific constraints characteristic 47 

of their respective brain regions. This framework offers testable predictions and we 48 

discuss its computational and neurobiological plausibility.  49 

 50 
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 54 

The promise of statistical learning 55 

Humans and other animals are constantly bombarded by streams of sensory 56 

information. Statistical learning (SL)—the extraction of distributional properties from 57 

sensory input across time and space—provides a mechanism by which cognitive 58 

systems discover the underlying structure of such stimulation. SL therefore plays a key 59 

role in the detection of regularities and quasi-regularities in the environment, results in 60 

discrimination, categorization and segmentation of continuous information, allows 61 

prediction of upcoming events, and thereby shapes the basic representations underlying 62 

a wide range of sensory, motor, and cognitive abilities. 63 

In cognitive science, theories of SL have emerged as potential domain-general 64 

alternatives to the influential domain-specific Chomskyan account of language 65 

acquisition ([1], see also [2] for related claims). Rather than assuming an innate, 66 

modular, and neurobiologically hardwired human capacity for processing linguistic 67 

information, SL, as a theoretical construct, was offered as a general mechanism for 68 

learning and processing any type of sensory input that unfolds across time and space. 69 

To date, evidence for SL have been found across an array of cognitive functions, such 70 

as segmenting continuous auditory input [3], visual search [4], contextual cuing [5], 71 

visuomotor learning [6], conditioning (e.g., [7]), and in general, any predictive behavior 72 

(e.g., [8,9]).  73 

 In this paper, we propose a broad theoretical account of SL, starting with a 74 

discussion of how a domain-general ability may be subject to modality- (see glossary) 75 

and stimulus-specific constraints. We define ‘learning’ as the process responsible for 76 

updating internal representations given specific input and encoding potential 77 
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relationships between them, thereby improving the processing of that input. Similarly, 78 

‘processing’ is construed as determining how an input to a neural system interacts with 79 

the current knowledge stored in that system to generate internal representations. 80 

Knowledge in the system is thus continuously updated via learning. Specifically, we take 81 

SL to reflect updates based on the discovery of systematic regularities embedded in the 82 

input, and provide a mechanistic account of how distributional properties are picked up 83 

across domains, eventually shaping behavior. We further outline how this account is 84 

constrained by neuroanatomy and systems neuroscience, offering independent insights 85 

into the specific constraints on SL. Finally, we highlight individual differences in abilities 86 

for SL as a major, largely untapped source of evidence for which our account makes 87 

clear predictions. 88 

 89 

Domain generality versus domain specificity 90 

Originally, domain generality was invoked to argue against language modularity; 91 

its definition therefore implicitly implied “something that is not language specific”. 92 

Consequently, within this context, “domain” implies a range of stimuli that share physical 93 

and structural properties (e.g., spoken words, musical tones, tactile input), whereas 94 

“generality” is taken to be “something that does not operate along principles restricted to 95 

language learning”. Note, however, that this approach says what domain generality is 96 

not, rather than saying what it is (e.g., [10]). More recent accounts of SL ascribe domain 97 

generality to a unitary learning system (e.g., [11]), that executes similar computations 98 

across stimuli (e.g., [12]), and that can be observed across domains (e.g., [13]), and 99 

across species (e.g., [14,15]).  100 
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As a theoretical construct, SL promised to bring together a wide range of 101 

cognitive functions within a single mechanism. Extensive research over the last decade 102 

has therefore focused on mapping the commonalities involved in the learning of 103 

distributional information across different domains. From an operational perspective, 104 

these studies investigated whether overall performance in SL tasks is indeed similar 105 

across different types of stimuli [16], whether there is transfer of learning across 106 

domains (see Box 1), whether there is interference between simultaneously learning of 107 

multiple artificial grammars (e.g., [17]) or from multiple input streams within and across 108 

domains [18], or whether individual capacities in detecting distributional probabilities in a 109 

variety of SL tasks are correlated ([19]).  110 

The pattern of results across these different studies is intriguingly consistent: 111 

contrary to the most intuitive predictions of domain-generality, the evidence persistently 112 

shows patterns of modality specificity and sometimes even stimulus specificity. For 113 

example, studies of artificial grammar learning (AGL, see Glossary) systematically 114 

demonstrate very limited transfer of learning across modalities, if at all (e.g., [20,21]). 115 

Similarly, the simultaneous learning of two artificial grammars can proceed without 116 

interference once they are implemented in separate modalities [17]. Modality specificity 117 

is also revealed by qualitative differences in patterns of SL in the auditory, visual, and 118 

tactile modalities [16], sometimes with opposite effects of presentation parameters 119 

across modalities [22]. To complicate matters even further, SL within modality reveals 120 

striking stimulus specificity, so that no transfer (and conversely, no interference) occurs 121 

within modality provided the stimuli have separable perceptual features (e.g., [17,23]). 122 

Finally, although performance in SL tasks displays substantial test-retest reliability 123 
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within modality, there is no evidence of any correlation within individuals in their 124 

capacities to detect conditional probabilities across modalities and across stimuli 125 

(Siegelman & Frost, unpublished). This contrasts with what might be expected if SL was 126 

subserved by a unitary learning system: that individual variation in its basic function 127 

would manifest itself in at least some degree of correlation across different SL tasks. If 128 

not, its unitary aspect remains theoretically empty because it does not have an empirical 129 

reality in terms of specific testable predictions. Taken together, these studies suggest 130 

that there are independent modality constraints in learning distributional information 131 

[16], pointing to modality specificity, and further to stimulus specificity akin to perceptual 132 

learning [24].  133 

Whereas this set of findings is not easy to reconcile with the notion of a unitary, 134 

domain-general system for SL, it does not necessarily invalidate the promise of SL to 135 

provide an overarching framework underlying learning across domains. Instead, what is 136 

needed is an account of SL that can explicate the manifestations of domain-generality in 137 

distributional learning with the evidence of its modality- and stimulus-specificity, 138 

restricted generalization, little transfer, and very low correlations of performance 139 

between tasks within individuals. More broadly, any general theory of learning that aims 140 

to describe a wide range of phenomena through a specific set of computational 141 

principles has to offer a theoretical account of how and why transfer, discrimination, and 142 

generalization take place, or not. 143 

 144 

Towards a mechanistic model of SL 145 

Our approach construes SL as involving a set of domain-general neurobiological 146 
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mechanisms for learning, representation, and processing that detect and encode a wide 147 

range of distributional properties within different modalities or types of input (see [13], 148 

for a related approach). Crucially, though, in our account, these principles are not 149 

instantiated by a unitary learning system but, rather, by separate neural networks in 150 

different cortical areas (e.g., visual, auditory, and somatosensory cortex). Thus, the 151 

process of encoding an internal representation follows constraints that are determined 152 

by the specific properties of the input processed in the respective cortices. As a result, 153 

the outcomes of computations in these networks are necessarily modality specific, 154 

despite multiple cortical and subcortical regions invoking similar sets of computational 155 

principles and some shared brain regions (e.g., Hebbian learning, reinforcement 156 

learning; for discussion, see [25,26]).   157 

For example, the auditory cortex displays lower sensitivity to spatial information but 158 

enhanced sensitivity to temporal information, whereas the visual cortex displays 159 

enhanced sensitivity to spatial information, but lower sensitivity to temporal information 160 

(e.g., [27,28]). Iconic memory is short-lived (scale of ms), whereas echoic memory lasts 161 

significantly longer (scale of seconds; e.g., [29]). Because auditory information unfolds 162 

in time, the auditory cortex must be sensitive to the temporal accumulation of 163 

information in order to make sense of the input. In contrast, visual information is 164 

instantaneous, and although temporal integration is necessary in some cases such as in 165 

deciphering motion, the visual cortex is relatively less sensitive to temporal 166 

accumulation of information over extended periods of time. These inherent differences 167 

are reflected in the way the sensory input eventually is encoded into internal 168 

representations for further computation. Moreover, within modality, encoding of events 169 
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displays graded stimulus specificity given their complexity, similarity, saliency, and other 170 

factors related to the quality and nature of the input (see [30,31], for evidence in visual 171 

SL). For example, participants are able to learn two separate artificial grammars 172 

simultaneously in the visual domain when the stimuli are from separate perceptual 173 

dimensions—such as color and shape—but not when they are from within the same 174 

perceptual dimension [16]. Figure 1 represents a schematic account of our approach 175 

and shows how the same learning and representation principles result in modality and 176 

stimulus specificity because they are instantiated in different brain regions, each with 177 

their characteristic constraints.  178 

Note that modality-specific constraints do not preclude the neurobiological ability to 179 

process multimodal events. Indeed, this has recently been shown within SL using the 180 

McGurk effect (see Glossary) in a cross-modal segmentation study [32]. More generally, 181 

perception of the world routinely involves multisensory integration (e.g., [33]), occurring 182 

at both low levels  (i.e., the thalamus, [34]; the dorsal cochlear nucleus, [35]) and higher 183 

levels of cortical processing (e.g., anterior temporal poles; [36]). Critically, however, 184 

each of these multimodal areas would be subject to its own distinct set of constraints, 185 

which would not necessarily be the same as those from the unimodal regions that feed 186 

into it or to the constraints in other multimodal areas. For example, coherence in the 187 

timing at which an auditory and a visual stimulus unfold is important for specific types of 188 

integration [18] in audio-visual brain areas [37], but not as important for detecting 189 

regularities in the case of integrating two different visual representations in the visual 190 

system. Note that this view is distinct from alternative accounts suggesting that a unitary 191 

learning mechanism operates on “abstract” amodal representations (e.g., [38]; see 192 
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Glossary). Instead, we suggest that multimodal regions are shaped by their own distinct 193 

sets of constraints.  194 

This brings us to an operational definition of ‘domain generality’. Within our 195 

framework, domain generality primarily emerges because neural networks across 196 

modalities instantiate similar computational principles. Moreover, domain generality may 197 

also arise either through the possible engagement of partially-shared neural networks 198 

that modulate the encoding of the to-be-learned statistical structure [39], or if stimulus 199 

input representations encoded in a given modality (e.g., visual or auditory) are fed into a 200 

multi-modal region for further computation and learning. As we shall see next, the 201 

current neurobiological evidence is consistent with both of these latter possibilities.  202 

 203 

The neurobiological bases of SL 204 

Recent neuroimaging studies have shown that statistical regularities of visual shapes 205 

results in activation in higher-level visual networks (e.g., lateral occipital cortex, inferior 206 

temporal gyrus; [40,41]), whereas statistical regularities in auditory stimuli result in 207 

activation in analogous auditory networks (e.g., left temporal and inferior parietal 208 

cortices; frontotemporal networks including portions of the inferior frontal gyrus, motor 209 

areas involved in speech production, [42]; and the pars opercularis and pars triangularis 210 

regions of the left inferior frontal gyrus; [43]). Since these studies contrasted activation 211 

for structured vs. random blocks of stimuli, the stronger activation for structured stimuli 212 

in the above ROIs is consistent with the notion that some SL occurs already in brain 213 

regions that are largely dedicated to processing unimodal stimuli, thus allowing for 214 

modality-specific constraints to shape the outcome of computations.  215 
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In addition to identifying modality-specific learning mechanisms, studies that employ 216 

neuroimaging or analyze event-related potentials point to some brain regions that are 217 

active regardless of the modality in which the stimulus is presented. Often, this work has 218 

associated SL effects with the hippocampus, and more generally with the medial 219 

temporal lobe (MTL) memory system (see, e.g., [44]). This is consistent with 220 

considerable systems neuroscience work that has established the hippocampus as a 221 

locus for encoding and binding temporal and spatial contingencies presented in multiple 222 

different modalities [40,44–48], as well as for consolidation of representations.  223 

Hippocampal involvement in SL could consist of indirect modulation of the 224 

representations in sensory areas or direct computations on hippocampal 225 

representations that are driven by sensorimotor representations (see [48] for a 226 

discussion). Note, however, that even in the case of direct hippocampal computations, 227 

the computed representations are not necessarily amodal, as traces of their original 228 

specificity nevertheless remain (e.g., [49]). Sub-regions of the hippocampus have been 229 

shown to send and receive different types of information from different brain regions, 230 

while developing specialization for representing those different types of information [50]. 231 

In addition, representations within the hippocampus itself are typically sparse, and are 232 

wired to be maximally dissimilar even when stimuli evoke similar activation in a given 233 

sensorimotor region [51–54]. Thus, even with a direct hippocampal involvement in SL, 234 

such computations would likely result in a high degree of stimulus specificity, as 235 

observed across many SL studies.  236 

Additional imaging work has identified regions of the basal ganglia [55] and 237 

thalamus [42,56] as important collaborating brain regions that work with the MTL 238 
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memory system to complete relevant sub-tasks involved in statistical learning. For 239 

instance, the thalamus may provide synchronizing oscillatory activity in the alpha-240 

gamma and theta-gamma ranges that enables the rapid and accurate encoding of 241 

sequences of events [56]. Thus, as summarized in Figure 2, the current neurobiological 242 

evidence indeed suggests that detection of statistical regularities emerges from local 243 

computations carried out within a given modality, and through a multi-domain 244 

neurocognitive system that either modulates or operates on inputs from modality-245 

specific representations. Whether unimodal computations are necessary or sufficient for 246 

SL, remains an open question. Whereas some studies report no learning following 247 

hippocampal damage [44], other report significant SL in spite of such damage (e.g., 248 

[57]). In this context we should note, that lack of SL cannot be unequivocally attributed 249 

to neurobiological impairment. Many normal participants do not show SL even with an 250 

intact MTL system (see, for example, performance of a subset of the control participants 251 

observed by [44], who do not fare better than the specific reported patient). This leads 252 

us to our next section on individual differences.   253 

 254 

Individual and group differences in SL 255 

The proposed framework leads us to argue that individual differences provide key 256 

evidence for understanding the mechanism of SL. In past work, it has often been 257 

assumed that individual variance in implicit learning tasks is significantly smaller than 258 

that of explicit learning (e.g., [58]). Consequently, the source of variability in 259 

performance in SL has been largely overlooked, and had led researchers to focus on 260 

average success rate (but see [19,59–61]).  261 
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In the context of SL, however, measures of central tendency can be particularly 262 

misleading, as often about one third of the sample or more is not performing the task 263 

above chance level (e.g., [12,60,61]). Moreover, tracking individual learning trajectories 264 

throughout the phases of a given SL task has recently suggested that there is a 265 

commensurate high level of variability in the learning curves of different individuals (e.g., 266 

[43,61]). In several areas of cognitive science, it is now well established that 267 

understanding the source of individual differences holds the promise of revealing critical 268 

insight regarding the cognitive operations underlying performance, leading to more 269 

refined theories of behaviour. Furthermore, a theory that addresses individual 270 

differences should aim to explain how learning mechanisms operate online to gradually 271 

extract statistical structure, as opposed to focusing strictly on the outcome of a learning 272 

phase in a subsequent test (e.g., [62]). 273 

As a first approximation, our theoretical model splits the variance across 274 

individuals into two main sources. First, as indicated by Figure 1, there is the variance 275 

related to efficiency in encoding representations within modality in the visual, auditory, 276 

and somatosensory cortex. This variance could derive from individual differences in the 277 

efficacy of encoding fast sequential inputs or complex spatial stimuli, and thus 278 

potentially could be traced to the neuronal mechanisms that determine the effective 279 

resolution of one’s sensory system. The second variance relates to the relative 280 

computational efficiency of processing multiple temporally and spatially encoded 281 

representations and detecting their distributional properties. This variance potentially 282 

could be traced to cellular- and systems-level differences in factors that include (but are 283 

not limited to) white matter density, which have been shown to affect AGL performance 284 
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[63], and variation in the speed of changes in synaptic efficacy [64]. In modeling terms, 285 

these factors would relate to parameters such as connectivity, learning rates, and the 286 

quality and type of information to be encoded and transmitted by a given brain region 287 

(see Box 2).  288 

The advantage of this approach is that it offers precise and testable predictions 289 

that can be empirically evaluated. Thus, individuals can display relatively increased 290 

sensitivity in encoding auditory information, but a relative disadvantage in encoding 291 

sequential visual information. Conversely, two individuals that have similar efficiency in 292 

terms of representational encoding in a given modality could differ in their relative 293 

efficiency in computing the distributional properties of visual or auditory events. In either 294 

case, low correlation in performance within individuals in two SL tasks, would be the 295 

outcome, as has been reported in recent studies (e.g., [19]). However, as exemplified in 296 

Box 3, accurate individual trajectories of SL can in principle be obtained by employing 297 

parametric designs that independently target the two sources of variance.  298 

Individual differences are particularly intriguing given recent claims regarding 299 

developmental invariance in some types of SL (e.g., [65]). If SL capacities per se do not 300 

change, and brain maturation and experience are primarily driving improvements in 301 

processes “peripheral” to SL such as attention, then the bulk of variability in individual 302 

developmental trajectories in SL abilities should be explained by these peripheral 303 

factors only. We believe that the current empirical support for this claim is limited (see 304 

[66] for a discussion). Further progress, however, requires a better fundamental 305 

understanding of individual differences in SL, as elaborated in Box 3.    306 

 307 
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Concluding remarks 308 

The present paper offers a novel theoretical perspective on SL that considers 309 

computational and neurobiological constraints. Previous work on SL offered a possible 310 

cognitive mechanistic account of how distributional properties are computed, with 311 

explicit demonstrations being provided only within the domain of language [65,67]. The 312 

perspective we offer has the advantage of providing a unifying neurobiological account 313 

of SL across domains, modalities, neural and cognitive investigations, and cross-314 

species studies, thus connecting with and explaining an extensive set of data. The core 315 

claim of our framework is that SL reflects contributions from domain-general learning 316 

principles that are constrained to operate in specific modalities, with potential 317 

contributions from partially shared brain regions common to learning in different 318 

modalities. Both of these notions are well grounded in neuroscience. Moreover, they 319 

provide our account with the flexibility needed to explain the apparently contradictory SL 320 

phenomena observed both within and between individuals, such as stimulus and 321 

modality specificity, while still being constrained by the capacities of the brain regions 322 

that subserve the processing of different types of stimuli. In addition to descriptive 323 

adequacy, our approach also provides targeted guidance for future investigations of SL 324 

via explicit neurobiological modeling and studies of the mechanics underlying individual 325 

differences. We therefore offer our framework as a novel platform for understanding and 326 

advancing the study of SL and related phenomena.   327 

 328 

 329 

 330 
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 533 

BOX 1: Generalization and transfer in statistical learning 534 

A key aspect of learning is to be able to apply knowledge gained from past 535 

experiences to novel input. In some studies of SL, for example, participants are first 536 

presented with a set of items generated by a pre-defined set of rules, and then in a 537 

subsequent test phase asked to distinguish unseen items generated by these rules (i.e. 538 

“grammatical items”) from another set of novel items that violate these rules (i.e. 539 

“ungrammatical items”). If they are able to correctly classify the unseen items as 540 

“grammatical” or “ungrammatical” at above chance levels, generalization from seen 541 

items to the novel exemplars is assumed. 542 

Many scientists initially interpreted successful generalization as evidence that the 543 

participants had acquired the rules used to generate the stimuli and applied them to the 544 

novel stimuli. However, several studies have shown that participants’ performance at 545 

test can be readily explained by sensitivity to so-called “fragment” information, 546 



22 

consisting of distributional properties of subparts of individual items [16]. Consider a 547 

hypothetical novel test item, ABCDE, which consists of various bigram (AB, BC, CD, 548 

DE) and trigram (ABC, BCD, CDE) fragments. The likelihood of a participant endorsing 549 

this test item as grammatical will depend on how frequently these bigram and trigram 550 

fragments have occurred in the training items. If a test item contains a fragment that has 551 

not been seen during training, then participants will tend to reject that item as 552 

ungrammatical (see [68]) . Thus, generalization in SL is often, if not always, driven by 553 

local stimulus properties and overall judgements of similarity, rather than the extraction 554 

of abstract rules.  555 

 Another possible way in which past learning could be extrapolated to new input is 556 

through the transfer of regularities learned in one domain to another (e.g., from visual 557 

input to auditory input). Although early studies appeared to support cross-modal transfer 558 

(e.g., [58,69]), more recent studies have shown that there is little, or no evidence for 559 

transfer effects, once learning during test based on repetition or simple fragment 560 

information is taken into account (e.g., [20,21,70]). 561 

 Generalization and transfer significantly differ in their contribution to theories of 562 

learning. Whereas generalization has been demonstrated in SL studies—which is 563 

important for the application of SL to language—there is little evidence of cross-modal 564 

transfer, likely because of the substantial differences in neurobiological characteristics 565 

of the visual, auditory and somatosensory cortices.   566 

  567 

BOX 2: Advancing SL Theory via Computational Modeling 568 

Computational modeling serves an important dual role in providing a quantitative 569 
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account of observed empirical effects, and in generating novel predictions to guide 570 

empirical research (e.g., [67,71,72]). Within our framework, such modeling should 571 

reflect the relevant neural hardware of sensory cortices, elucidating what distributional 572 

properties are tracked by neural networks, as well as how [40,56,73]. It should also 573 

make direct contact with neural measures as opposed to focusing strictly on behavioral 574 

end-states (see [72,74,75] for discussion).   575 

The development of explicit models allows for the parametric variation of different 576 

aspects of the SL system, including the contributions of different learning mechanisms, 577 

different brain regions, as well as of the quality and nature of the representations in 578 

different parts of the system (Figure I). This allows the probing of the model's ability to 579 

account not only for group-averaged effects, but also for individual differences (see Box 580 

3; [76]), and to establish how and why variation in different aspects of the system 581 

modulate overall performance.   582 

  Recent advances in “deep” neural networks have also enabled interesting 583 

insights into the effects of allowing intermediate representations to emerge as a function 584 

of learning [77,78], as opposed to being explicitly stipulated. This relates directly to the 585 

issues of modality and stimulus specificity that currently challenge SL theories. For 586 

instance, representations closer to the sensory cortices are learned earlier and are 587 

more strongly shaped by the specific characteristics of individual stimuli. This contrasts 588 

with higher-order (but possibly modality specific) areas that operate on these early 589 

sensory representations, and which can detect commonalities in higher-order statistics 590 

despite little similarity in the surface properties or lower-order statistical relationships 591 

amongst the stimuli (for related work using a Bayesian approach, see [79]). This 592 
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predicts that SL tasks that involve stimuli whose relationships are only detectable in 593 

higher-order statistics should be more likely to show at least some generalization 594 

relative to early sensory regions, which are predicted to exhibit stronger stimulus-595 

specificity (for a related proposal see [80]). For instance, the purpose of some brain 596 

regions is primarily to distinguish between highly-similar complex inputs (e.g., visual 597 

expertise areas such as the putative fusiform face area; [81]), or to transmit similar 598 

outputs to multiple brain regions regardless of the source of its input (e.g., the semantic 599 

memory system; [82]). Such a model is also able to account for stimulus specificity in 600 

some higher-order domains and predict the possibility of generalization in others.  601 

 602 

BOX 3: Mapping individual trajectories in statistical learning. 603 

The present theoretical approach outlines a methodology for investigating 604 

individual performance in SL tasks by orthogonally manipulating the experimental 605 

parameters affecting encoding efficacy on the one hand, and parameters related to 606 

efficiency in registering distributional properties, on the other. In general, manipulations 607 

that center on input encoding parameters (temporal presentation rate, number of items 608 

in a spatial configuration, stimuli complexity, etc.), will probe individual abilities in 609 

encoding stimuli in a given modality. In contrast, manipulations that center on 610 

transitional probabilities (i.e., the likelihood of Y following X, given the occurrence of X), 611 

types of statistical contingencies (e.g., adjacent or non-adjacent), etc., will probe the 612 

relative efficiency of a person’s computational ability for registering distributional 613 

properties (see [6] for manipulation of transitional probabilities in a Serial Reaction Time 614 

task). Such parametric experimental designs would reveal, for any given individual, 615 
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specific patterns of interaction of two main factors driving SL, outlining how their joint 616 

contribution determines his/her performance on a specific task. Figure I presents 617 

hypothetical plots of the performance of two individuals following such parametric 618 

manipulations. The figure illustrates differential trajectories of individual sensitivities to 619 

either type of manipulation. This experimental approach has the additional promise of 620 

revealing systematic commonalities or differences in sensitivity to various types of 621 

distributional properties across domains or modalities.  622 

A possible extension of this line of research would incorporate the impact of prior 623 

knowledge on SL. The process of encoding representations of any continuous input is 624 

dependent on the characteristics of the representational space for a given individual. 625 

Thus, encoding an input of continuous syllabic elements (e.g., [12]) is different than 626 

encoding a sequence of non-linguistic novel sounds (e.g., [83]), affecting SL efficacy. 627 

This could generate significant individual differences in SL in domains such as 628 

language, where individuals differ significantly in their linguistic representations (e.g., 629 

vocabulary size, number of languages spoken). 630 

Note that most current research on individual differences in SL focuses on 631 

predicting general cognitive or linguistic abilities from performance in SL tasks [19,59–632 

61,84,85] or showing similar neural correlates within subjects for SL and language 633 

[86,87]. Investigating the various facets of performance in SL, as outlined above, is a 634 

necessary further step to describe and explain the specific sources of potential 635 

correlations between SL test measures and the cognitive functions they are aimed to 636 

predict. Identifying these sources would, in turn, allow researchers to refine predictions 637 

and generate well-defined a priori hypotheses.   638 
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 639 

BOX 4: Outstanding questions 640 

 To what degree are high-level cognitive SL effects and low-level sensorimotor SL 641 

effects modulated by the partially shared SL systems (e.g., hippocampus, basal 642 

ganglia, inferior frontal gyrus) versus modality-specific systems?   643 

 Can a better understanding of low-level cellular and systems neurobiology guide 644 

theoretical advance by predicting the specific types of information that a brain 645 

region will be most suited to encode and, consequently, the types of statistical 646 

learning that may take place? 647 

 To what degree does variability in the quality and nature of an individual’s 648 

modality-specific representations of individual stimuli, and variability in sensitivity 649 

to the dependencies between stimuli, explain individual differences in SL 650 

experiments?  651 

 To what degree are the modality-specific and partially-shared neural processing 652 

systems that underlie SL modulated by experience versus neuronal maturation 653 

throughout development?   654 

655 
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GLOSSARY 656 

Amodal representations. “Amodal” representations are typically taken to be “abstract” 657 

in the sense that they are not bound by specific sensory features (e.g., visual or 658 

auditory). Apart from the problem of defining a theoretical construct in terms of what it is 659 

not, the neurobiological evidence for such representations is scarce. 660 

Artificial Grammar Learning (AGL). In a typical AGL experiment, participants are 661 

exposed to sequences generated by a miniature grammar. Participants are only 662 

informed about the rule-based nature of the sequences after the exposure phase, when 663 

they are asked to classify a new set of sequences, some of which follow the grammar 664 

while others do not. AGL is also considered to be a kind of implicit learning task. 665 

Generalization. Refers to extension of learned statistical structure to unseen stimuli, 666 

typically from within the same modality or stimulus domain.   667 

Internal Representation. In neurobiological terms, an internal representation of a 668 

stimulus is the pattern of neural activity evoked by a stimulus in a brain region (or 669 

network of brain regions). 670 

McGurk effect.  The McGurk effect [88] illustrates the potentially complex interactions 671 

between two conflicting streams of information from the auditory and visual modalities.  672 

For instance, if a video of an individual pronouncing /ga/ is combined with the sound 673 

/ba/, a listener will tend to hear /da/ because the sound /da/ is most consistent with the 674 

visually-perceived positions of the lips and with the auditorily-perceived sound.   675 

Modality.  The sensorimotor mode in which the stimulus was presented (e.g., vision, 676 

audition, touch).  One modality may contain several sub-modalities (e.g., visual motion, 677 

color), each of which is subserved by distinct neuroanatomy. 678 
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Multimodal representations. Representations that form when information from two or 679 

more modalities are integrated in a representational space and associated brain region 680 

(or network of regions). Importantly, these representations are, therefore, not “amodal”.  681 

Transfer.  A broader type of extension of learned knowledge than generalization, and 682 

refers to the application of learned regularities to novel domains and/or modalities. 683 

684 
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Figure 1 – Theoretical Model of Statistical Learning 693 

 694 

 695 

 696 

Schematic representation of the processing of distributional information in the visual, auditory, 697 

and somatosensory cortex, for unimodal and multimodal events. Different encoded 698 

representations of continuous input presented in time or space result in task-stimulus specificity, 699 

in spite of similar computations and contributions from partially shared neurocomputational 700 

networks.  701 
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 702 

Figure 2 - Key Neural Networks involved in Visual and Auditory Statistical Learning 703 

 704 

 705 

 706 

Key brain regions associated with domain-general (blue), and lower- and higher-level auditory (green) 707 

and visual (red) modality-specific processing and representation, plotted on a smoothed ICBM152 708 

template brain.  The depicted regions are not intended to constitute an exhaustive set of brain regions 709 

subserving each domain.  C = Cuneus,  FG = Fusiform Gyrus, STG = Superior Temporal Gyrus, IPL = 710 

Inferior Parietal Lobule, H = Hippocampus, T = Thalamus, CA = Caudate, IFG = Inferior Frontal Gyrus.  711 

Generated with the BrainNet Viewer [89]. 712 

713 
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 714 

Box 2 - Figure I – Candidate computational architecture for explaining and predicting 715 

the neural and behavioural data pertaining to statistical learning 716 

 717 

 718 

 719 

Depiction of candidate SL model architecture. In this model, visual and auditory sensory input 720 

are first encoded and processed in pools of units (neurons) that code for low-level sensory 721 

features (e.g., sound frequency, edge orientation). These pools then project to higher-level 722 

visual and auditory areas which are better suited for detecting higher-order statistics and 723 

developing more sophisticated representations (e.g., of objects or syllables). Bimodal 724 

representations may also be learned in an area that receives inputs from both modalities. All of 725 

these modality-specific and bimodal areas also project to and receive feedback from shared 726 

representation and memory modulation systems. Arrows denote connections that send 727 

representations from one pool to another; blue lines denote connections that can either send 728 

representations, modulate processing, or both. Note that this figure is not intended to be 729 

exhaustive: other representations (e.g., low-level audio-visual) are assumed to be part of a more 730 

complete model, as is the coding of more detailed sensory information inputs (e.g., color, shape, 731 

movement, taste, smell). 732 

733 
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Box 3 - Figure I - Predicted empirical results illustrating how stimulus encoding and 734 

transitional probability shape individual differences 735 

 736 

 737 

 738 

 739 

The two graphs above present hypothetical data from two participants and illustrates how the ability to 740 

detect regularities and to encode inputs may be separated experimentally.  Panel A demonstrates the 741 

manipulation of rate of presentation and shows that whereas Participant 1 performs well even in relatively 742 

fast rates, Participant 2 shows no learning when stimuli are presented at or above a rate of one per 600 743 

ms. Panel B displays the manipulation of transitional probabilities. Here the rate of presentation is the 744 

same across all 5 tasks, but transitional probabilities vary from 0.6 to 1. The results show that Participant 745 

2, who performs above chance in the test even when the transitional probabilities between elements are 746 

low, is more efficient in detecting probabilities than Participant 1. 747 

 748 


