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Abstract. Investigations into the neural basis of reading have shed light on the cortical locus 

and the functional role of visual-orthographic processing. Yet, the fine-grained structure of 

neural representations subserving reading remains to be clarified. Here, we capitalize on the 

spatiotemporal structure of electroencephalography (EEG) data to examine if and how EEG 

patterns can serve to decode and reconstruct the internal representation of visually presented 

words in healthy adults. Our results show that word classification and image reconstruction 

were accurate well above chance, that their temporal profile exhibited an early onset, soon 

after 100ms, and peaked around 170ms. Further, reconstruction results were well explained 

by a combination of visual-orthographic word properties. Last, systematic individual 

differences were detected in orthographic representations across participants. Collectively, 

our results establish the feasibility of EEG-based word decoding and image reconstruction. 

More generally, they help to elucidate the specific features, dynamics, and 

neurocomputational principles underlying word recognition. 
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Extensive work has been dedicated to elucidating the neural basis of reading and its reliance 

on visual-orthographic representations. For instance, much is known about the role played by 

the ventral occipital-temporal cortex (vOT) in deriving such representations (Dehaene & 

Cohen, 2011; Glezer, Jiang, & Riesenhuber, 2009; Price & Devlin, 2011; Rauschecker, 

Bowen, Parvizi, & Wandell, 2012; Striem-Amit, Cohen, Dehaene, & Amedi, 2012; Taylor, 

Rastle, & Davis, 2013). Also, the speed and efficiency of processing visual-orthographic 

representations, as revealed by their time course, has provided important theoretical insights 

(Araújo, Faísca, Bramão, Reis, & Petersson, 2015; Chen, Davis, Pulvermüller, & Hauk, 

2015; Hauk, Davis, Ford, Pulvermüller, & Marslen-Wilson, 2006). Yet, the nature and the 

visual structure of such representations remain to be clarified. 

One longstanding challenge, with considerable theoretical and practical implications, 

is whether visual words could be discriminated from one another based on the neural activity 

that they elicit (Suppes, Lu, & Han, 1997). Recently, this challenge has been addressed with 

the aid of pattern analyses (e.g., classification) as applied to functional Magnetic Resonance 

Imaging (fMRI) (Baeck, Kravitz, Baker, & de Beeck, 2015; Nestor, Behrmann, & Plaut, 

2013), electrocorticography (ECoG) (Hirshorn et al., 2016) or combinations of 

magnetoencephalography (MEG) and EEG data (Chan, Halgren, Marinkovic, & Cash, 2011). 

These attempts have shed light on the visual-orthographic representational space underlying 

reading, on its cortical locus, and on the extended time course of visual word discrimination. 

However, the precise nature of the information that facilitates discrimination, as well as its 

robustness and its variability across individuals remain to be elucidated. 



Relevantly here, neural-based image reconstruction (Chang & Tsao, 2017; Naselaris, 

Prenger, Kay, Oliver, & Gallant, 2009; Nestor, Plaut, & Behrmann, 2016; Nishimoto et al., 

2011; Shen, Horikawa, Majima, & Kamitani, 2017) aims to reveal the content of fine-grained 

visual representations by retrieving the appearance of visual objects from neural activity 

prompted by their processing. For instance, several fMRI studies have addressed the 

challenge of reconstructing the appearance of single letters from fMRI patterns associated 

with their reading (Miyawaki et al., 2008; Schoenmakers, Barth, Heskes, & van Gerven, 

2013; Thirion et al., 2006). Broadly, image reconstruction informs the nature of the mapping 

between the visual world and neural representations: how exactly a visual pattern (e.g., 

corresponding to a stimulus) is converted into a neural pattern and vice-versa (Naselaris, Kay, 

Nishimoto, & Gallant, 2011). Critical to our purposes, reconstruction can help to characterize 

the fidelity and the robustness of visual representations underlying reading. Yet, to date, the 

application of this methodology to single characters, rather than entire words, has limited its 

psycholinguistic implications. 

Here, we used pattern analysis of electroencephalography (EEG) data and image 

reconstruction to uncover the structure of visual word representations, their temporal 

dynamics, as well as individual differences associated with their processing. To be clear, 

while pattern analysis may be able to shed light on multiple types of psycholinguistic 

processing (e.g., semantic), the present work focuses mainly on visual and orthographic 

processing. To this aim, here we collected EEG recordings associated with reading 80 high-

frequency nouns in healthy adults and, then, we exploited spatiotemporal patterns associated 

with these words to decode and to reconstruct their visual appearance from neural data. A key 



aspect of the method concerns the use of representational similarity (Kriegeskorte, Mur, & 

Bandettini, 2008), applied here to EEG patterns, as a way to probe the structure of a visual 

word representational space and, also, as a step in our reconstruction procedure. Of note, both 

neural-based similarity and objective image similarity are considered in the process of 

deriving human and theoretical observer (TO) reconstructions. This approach facilitates an 

evaluation of the veracity of visual representations and/or their divergence from an image-

based groundtruth. 

Several hypotheses motivate the current work. First and foremost, our study tested the 

hypothesis that EEG-based decoding and reconstruction of visual words are feasible by virtue 

of their ability to capture both visual and orthographic aspects of neural word representations. 

Second, we hypothesized that word decoding and reconstruction exploit an extensive 

temporal window, though dominated by specific temporal intervals (e.g., around the N170 

component) in agreement with previous ERP research. Third, we surmised that reconstruction 

may be able to identify individual differences in visual-orthographic representations (e.g., 

with regard to the shape of specific letters).  

Overall, our results show that: (i) pairwise word classification is well above chance 

across participants (61-80% accuracy against 50% chance level) and that image 

reconstruction can be achieved with a level of accuracy closely matching that of word 

classification; (ii) the time course of classification/reconstruction peaks in the proximity of 

the N170 component, though complementary information can be found across an extensive 

temporal interval, and (iii) the structure of visual representations varies systematically across 

participants. More generally, these results speak to the underexploited wealth of information 



available in the EEG signal, accessible through pattern analyses, and to its ability to shed 

light on the fine-grained structure of visual-orthographic representations. 

 

Materials and Methods 

Participants 

Eighteen healthy Caucasian adults were recruited from the University of Toronto 

community in exchange for monetary compensation. One participant was excluded due to 

technical difficulties with the EEG recordings while three other participants were excluded 

due to left-handedness. The remaining fourteen right-handed participants (nine females; age 

range: 20–26 years) were included in the analyses. Participants listed English as their first 

language and the only language in which they were fluent in speaking and writing. All 

participants had normal or corrected-to-normal vision and reported no history of cognitive or 

neurological impairment. All participants provided informed consent and all experimental 

procedures were approved by the Research Ethics Board at University of Toronto. 

 

Stimuli 

Eighty word images of concrete nouns with consonant-vowel-consonant (CVC) 

structure were used as experimental stimuli. The words were selected from the UNION 

database (www.blairarmstrong.net/tools/index.html) which includes words with frequencies 

higher than or equal to 1 in the SUBTL word frequency norms (Brysbaert & New, 2009) and 

words with syllabified pronunciations from the CMU pronunciation dictionary (Bartlett, 

Kondrak, & Cherry, 2009). Stimuli were selected so as to balance the number of occurrences 

http://www.blairarmstrong.net/tools/index.html


of each letter at each position as much as possible in the context of the experimental dataset 

(e.g., each letter appeared at least twice in each position). Psycholinguistic covariates 

explored including positional letter frequency (M = 194.63, SD = 33.32, range: 133 – 256), 

positional letter-bigram frequency (M = 16.64, SD = 4.38, range: 7 - 26), SUBTL word 

frequency (M = 70.06, SD = 130.22, range: 1.22 – 569.92), orthographic Levenshtein 

distance (M = 1.16, SD = 0.19, range: 1.00 – 1.75), number of orthographic neighbors(M = 

16.61, SD = 4.51, range: 9 – 26), phonological Levenshtein distance (M = 1.08, SD = 0.17, 

range: 1.00 – 1.70) and number of phonological neighbors (M = 22.55, SD = 6.81, range: 8 - 

38).  

Word stimuli were presented on a black background using monospaced font Consolas 

lower-case font with white strokes. Word images were created with a font size of 150, 

resulting in 247x151 pixel images. Stimuli were presented at the center of the screen against 

a black background and subtended a visual angle of 4.87º x 2.86º from a distance of 80 cm. 

 

Data Collection 

During the experiment participants were seated in a dimly lit room in front of an LCD 

monitor (resolution: 1920 X 1080, refresh rate: 60Hz). Participants were presented with 

sequences of experimental stimuli and were asked to complete a go/no-go one-back image 

task by pressing a designated key every time they noticed that a stimulus was presented twice 

in a row. The experiment consisted of two sessions conducted on two separate days. Each 

session contained 16 experimental blocks preceded by one training block that aimed to 

familiarize participants with the task and the stimuli as well as to direct their focus to the 



perceptual properties as opposed to the semantic properties of the stimuli. Due to fatigue, one 

participant completed only 14 blocks on the second session, resulting in a total of 30 

completed blocks.  

Specifically, each experimental block consisted of a sequence of 270 trials: 30 go trials 

and 240 no-go trials consisting of three repetitions of each stimulus. Trial order was 

pseudorandomized so that repetitions of one word, other than those on go trials, were 

separated by at least 40 intervening trials. On each trial a stimulus was displayed for 300ms, 

then it was replaced by a white noise mask for 100ms and it was followed by a fixation cross 

for a duration ranging randomly between 500-600ms. The blocks were separated by self-

paced breaks. Each experimental session, including participant and equipment setup, lasted 

around 2.5 hours. Stimulus presentation and response recording relied on Matlab 

(Mathworks, Natick, MA) and Psychtoolbox 3.0.8 (Brainard, 1997; Pelli, 1997). 

 

EEG acquisition and pre-processing 

High-density EEG was recorded using a Biosemi ActiveTwo system with 64 gelled 

electrodes mounted on an elastic cap using the 10/20 System. This system replaces 

conventional ground electrodes with the Common Mode Sense (CMS) active electrode and 

the Driven Right Leg (DRL) passive electrode. These two electrodes form a feedback loop 

which drives the average potential of the subject to be roughly equivalent to the Analogue 

Digital Converter (ADC) reference voltage, which serves as the amplifier's “zero”. Electrodes 

CMS and DRL served as the online reference while AFz served as the ground. The reference 

was computed offline based on the average of all electrodes. The EEG signal was amplified 



at a sampling rate of 512 Hz. The electrode offset was kept below 40 mV. The EEG were 

low-pass filtered using a fifth order sinc filter with a half-power cutoff at 204.8 Hz and then 

digitized at 512 Hz with 24 bits of resolution. All data were digitally filtered offline (zero-

phase 24 dB/octave Butterworth filter) with a bandpass of 0.1–40 Hz. Then, data were 

separated into epochs, from 100ms prior to stimulus presentation until 900ms later, and 

baseline-corrected. Specifically, the pre-stimulus period (-100 to 0ms) signal served as 

baseline and was subtracted from each trial. 

‘Go’ trials as well as false alarm trials were excluded from analyses. Further, epochs 

with voltage exceeding +/- 150 μV at any electrode were excluded. After removing trials 

containing artifacts and/or false alarms, an average of 99.4% of trials (range: 97.8% - 99.9% 

across participants) were selected for further analysis. In particular, we note that relatively 

few trials contained false alarms as participants performed the go/no-go recognition task at 

ceiling (accuracy range: 95.8% - 99.7%; reaction time: 593ms – 774ms across participants). 

Of note, neither accuracy, nor reaction time correlated significantly with decoding or 

reconstruction accuracy across participants (p’s > 0.32). 

Further, noisy electrodes were interpolated if necessary (no more than 2 electrodes per 

subject) and ocular artifacts (i.e., blinks) were removed using independent component 

analysis (exactly one component was removed from each participant). 

All EEG analyses were carried out using Letswave 6 (Mouraux & Iannetti, 2008, 

RRID:SCR_016414), and MATLAB 9.0. 

 

Stimulus classification 



Decoding relied on spatiotemporal patterns across 12 bilateral OT electrodes (left: P5, 

P7, P9, PO3, PO7, O1 and right: P6, P8, P10, PO4, PO8, O2). Their selection was motivated 

by their relevance for word processing (e.g., robust N170 amplitudes) (Bentin, Mouchetant-

Rostaing, Giard, Echallier, & Pernier, 1999; Maurer, Zevin, & McCandliss, 2008).  

To derive spatiotemporal patterns for classification purposes, EEG signals were first 

normalized across all trials by z-scoring data separately for each electrode and each time bin. 

To be clear, normalization, along with subsequent pattern classification steps, were 

conducted separately for each participant allowing the evaluation of decoding performance 

separately for each participant. Then, the data were averaged for each stimulus across all 

epochs from two consecutive blocks (i.e., for a maximum of 6 trials) in order to boost the 

signal-to-noise ratio (SNR) of spatiotemporal patterns for classification purposes 

(Grootswagers, Wardle, & Carlson, 2017; Nemrodov, Niemeier, Patel, & Nestor, 2018) and 

to speed up processing times. This procedure aimed to find the right balance between the 

number of observations per class, on the one hand, versus the number of trials that are 

averaged into a single observation, on the other. The averaging parameters (i.e., yielding 16 

observations per class and 6 trials averaged per observations) were guided by previous 

explorations of experimental data not included in the current study. 

Next, data were concatenated across 12 electrodes and multiple time points to capture 

spatiotemporal information present in the EEG signal. Specifically, data were concatenated 

across a large 50-650ms window, for temporally cumulative analyses aimed at boosting 

classification accuracy. In addition, for the purpose of complementary analyses aimed at 

elucidating the temporal profile of word decoding rather than boosting overall accuracy, data 



were concatenated across consecutive 10ms windows (5 bins*1.95ms≈10ms) between -100 

and 900ms. These procedures both delivered 16 observations per word for each participant 

either across the overall time course, in the former case, or for each position of the sliding 

window, in the latter. 

To assess word discrimination thoroughly we considered the ability to classify each 

word (out of 80) from every other word (yielding a total number of 3160 word pairs). Pattern 

classification was conducted for each pair of words for each participant, with the aid of linear 

SVM (c = 1) and leave-one-out cross-validation (i.e., one out of 16 pairs of observations was 

systematically left out for testing while the remaining 15 were used for training). 

Classification accuracy was then assessed both parametrically at the group level (one-sample 

two-tailed t-tests against 50% chance level) and non-parametrically via permutation tests 

separately for each participant (i.e., based on 1000 random shuffles of classification labels). 

Multiple comparison correction was carried out via FDR in the case of 10ms-based estimates 

across the entire time course. 

Cross-time classification followed a similar approach except that the classifier was 

trained on any given 10ms window and then tested on every 10ms window. Significance 

testing was carried out in this case via two-tailed t-tests against chance followed by FDR 

correction. 

 

Image reconstruction 

The current procedure builds upon a recent approach to facial image reconstruction 

designed to exploit spatiotemporal information in neuroimaging patterns (Nemrodov et al., 



2018; Nestor et al., 2016). Here, we deployed this procedure to capture the structure of an 

EEG-derived word space and its ability to support word image reconstruction. This procedure 

consisted of a sequence of steps as follows - see Figure 1. First, a word similarity space was 

derived from the pairwise classification of 79 words, after leaving out the reconstruction 

target. Specifically, a 20-dimensional similarity space was estimated through metric MDS, 

given that this number of dimensions accounted for a significant proportion of the data 

variance for any participant (e.g., over 70% for temporally cumulative analyses). 

Second, a corresponding number of visual features (i.e., one for each dimension of 

MDS-derived space) were computed for each dimension through an approach akin to reverse 

correlation/image classification (see (Murray, 2011) for a review). Notably, this approach 

aims to synthesize stimulus features responsible for stimulus space topography through a 

linear combination of stimulus images. Specifically, images were processed with a Gaussian 

filter with a 5-pixel kernel size (previously optimized to boost reconstruction accuracy for the 

theoretical observer). Then, a weighted sum of these images was computed proportionally to 

the coordinates of the corresponding words on any given dimension. Thus, the outcome of 

these computations delivers, for each dimension, a single feature, or ‘classification image’ 

(CIM).  

Third, we considered the possibility that not all stimulus space dimensions encode 

visual information (e.g., as opposed to higher-level semantic information or just noise). 

Hence, to identify relevant features, a permutation test was conducted to assess the presence 

of significant information. Specifically, word identities were randomly shuffled with respect 

to their coordinates on each dimension and a corresponding feature was recomputed for a 



total of 1000 permutations. Then, each true feature was compared to all permutation-based 

features, pixel by pixel (two-tailed permutation test; FDR correction across pixels; q < 0.05). 

Following this procedure, only features that contained significant pixels were selected for 

reconstruction purposes. 

Fourth, the target word was projected into the existing similarity space. To this end, a 

new MDS solution was constructed for all 80 identities and aligned with the original one via 

Procrustes analysis using the 79 common words between the two spaces. The resulting 

alignment provides us with a mapping between the two spaces that allows us to project the 

target word and to retrieve its coordinates in the original space, for which visual features 

were derived. Of note, this procedure enforces non-circularity by excluding the 

reconstruction target from the estimation visual word features. 

Last, informative features were linearly combined proportionally to the coordinates of 

the target word on each corresponding dimension. Then, their sum was added to the average 

of the 79 stimuli used for feature derivation into an image reconstruction of the target. 

The reconstruction procedure above was carried out in two complementary manners: 

by considering word classification estimates separately for consecutive 10ms windows 

between -100 – 800ms or by considering a single larger window between 50 – 650ms. 

Further, the results of each participant were either considered separately or averaged across 

similarity matrices and then treated in the same manner as the data of any single participant. 

 

Evaluation of reconstruction results 



Reconstruction accuracy was assessed by comparing each reconstructed stimulus with 

every filtered stimulus, with the aid of an L2 pixelwise metric, and determining in each case 

whether the reconstruction is closer to its intended target than to any other stimulus. This 

procedure was carried out for entire words or separately for each letter position (i.e., the first 

consonant, the middle vowel and the third consonant) – in the latter case each reconstructed 

letter was compared against the corresponding image fragment. 

Further, a single set of reconstructions, based on temporally cumulative group-based 

data, was subjected to experimental evaluation in a separate behavioral test. To this end, 20 

new participants (6 males and 14 females, age range: 16 – 27 years), who were all proficient 

English speakers and whose first language relied on the Roman alphabet, were requested to 

match image reconstructions to their targets in a two-alternative forced choice (2AFC) task. 

Specifically, each of 80 word reconstructions was presented in the company of two stimuli, 

one of which was the actual target and the other another word stimulus. Thus, on each trial, a 

display was shown containing a reconstructed image, at the top, and two stimuli side by side, 

at the bottom. Each display was presented until participants made a response to decide which 

stimulus was more similar to the top image by pressing a designated left/right key. For each 

participant, any reconstructed image was presented twice in the company of different foils; 

thus, across participants, all 79 possible foils for a given reconstruction were exhausted. 

Stimulus order was pseudorandomized so that different reconstructed images appeared on 

consecutive trials while target stimuli appeared equally often on the left/right side. Each 

experimental session was completed over the course of 30 minutes. 



Experimental-based estimates of reconstruction accuracy results were measured as the 

proportion of correct matches across participants and tested for significance tested against 

chance (50%) using a one-sample two-tailed t-test. 

 

Word similarity and visual theoretical observer 

Multiple sources of pairwise word similarity were considered as follows: (i) visual 

similarity based on L2 image distances across pairs of stimuli; (ii) orthographic similarity 

measured as the number of shared letters at each letter position; (iii) phonological similarity 

based on estimates of pairwise phoneme confusability (Cutler, Weber, Smits, & Cooper, 

2004) averaged across letter positions, and (iv) semantic similarity computed as the 

Euclidean distance between pairs of words based on GloVe vectors (Pennington, Socher, & 

Manning, 2014).  

The pairwise discriminability for every 10ms interval was correlated with the 

corresponding estimates of pairwise word similarity above. Temporally cumulative word 

discriminability was also examined with the aid of multiple linear regression using the 

similarity estimates above. 

In addition, a visual theoretical observer was constructed by using the objective 

measures of visual similarity above as inputs for the reconstruction procedure. Its accuracy 

was then computed for entire words and, also, separately for each letter position. 

 

 

 



Results 

Visual word classification 

Participants viewed 80 word stimuli, consisting of high-frequency nouns with a three-

letter consonant-vowel-consonant (CVC) structure - see prior work (Laszlo & Federmeier, 

2011) for a characterization of the EEG signal elicited by such stimuli. Pattern classification 

was conducted across ERP traces corresponding to these stimuli across multiple electrodes – 

we detail here results obtained for 12 bilateral occipitotemporal (OT) electrodes since they 

yielded equivalent or better results to those obtained for all electrodes, as described below. 

Specifically, we aimed to estimate the discriminability of each pair of word images for each 

participant from spatiotemporal (i.e., channels x temporal points) patterns – see Figure 1 for 

a flowchart of the decoding and reconstruction procedure. 

First, classification was conducted on temporally cumulative data from a large 

interval ranging between 50 – 650ms post-stimulus onset. The average classification 

accuracy across participants (M = 71.5%, SD = 5.9%) was higher than chance (two-tailed 

one-sample t-test against 50% accuracy: t(13) = 13.59, p < 0.001) – see Figure 2. Additional 

permutation tests confirmed that decoding accuracy was above chance for every single 

participant (p = 0.001). 

To examine the temporal profile of word discrimination, pattern classification was 

conducted next separately for ~10ms windows (i.e., 5 time bins x 1.95 ms) between -100ms 

and 800ms relative to stimulus onset. The resulting classification time course evinced a long 

interval of above-chance classification (two-tailed t-tests against chance; FDR-corrected; q < 

0.05) – see Figure 3a. Classification reached significance around 100ms and it peaked at 



200ms (M = 61.4%, SD = 4.4%), in the proximity of the N170 ERP component - see Figure 

S1 for ERP traces.  

Given that the temporally cumulative analysis above, which considered a single large 

temporal interval, resulted in higher classification accuracy than the peak performance across 

multiple smaller temporal windows, it is likely that complementary information about word 

decoding exists at different points in time. To assess this hypothesis, we evaluated cross-time 

generalization by training a classifier on data from any given 10ms window and, then, testing 

it on every 10ms window. This analysis revealed above-chance classification across time, 

especially between 100-600ms (two-tailed one-sample t-tests against chance; FDR 

correction, q < 0.01), indicating that relevant information is maintained over time and – see 

Figure S2, thus, some degree of redundancy. However, off-diagonal cells, corresponding to 

different temporal windows for training and testing, yielded relatively low levels of accuracy, 

consistent with poor generalization across time and, thus, with the presence of 

complementary information over time. 

 To assess our choice of electrodes, we conducted the temporally cumulative analysis on 

all 64 electrodes and compared the results with those obtained from 12 OT electrodes 

described above. On average, decoding accuracies based on all electrodes were slightly lower 

(M = 70.1%, SD = 5.1%) and the difference was marginally significant (t(13) = 1.84, p = 

0.09). In light of these findings, all subsequent results are based on data recorded from OT 

electrodes. 

 

 



Representational similarity analyses and visual similarity space 

To evaluate the similarity structure of word decoding results, pairwise word 

classification estimates were averaged across participants and compared against other 

measures of word similarity. Specifically, EEG-based estimates were compared against 

visual, orthographic, phonological and semantic measures of word similarity (see Methods). 

First, we conducted a multiple linear regression with pairwise EEG-based word 

discriminability obtained from the temporally cumulative analysis as outcome, and visual, 

orthographic, phonological, and semantic similarities as predictors. Visual similarity (b = 

0.003, t(3155) = 29.68, p < 0.001) and orthographic similarity (b = 0.06, t(3155) = 9.27, p < 

0.001), but not phonological or semantic similarity, made significant independent 

contributions to predicting EEG-based word discriminability.  

Next, in order to examine the temporal profile of word recognition, we correlated each 

psycholinguistic similarity measures with EEG-based word discriminability for every 10ms 

windows between -100 – 800ms relative to stimulus onset. An evaluation of these estimates 

across time showed significant correlations between the EEG data on one hand, and visual 

similarity, orthographic similarity, and phonological similarity on the other (see Figure 4; 

Pearson correlation; FDR-corrected; q < 0.01). These correlations appear to peak for visual, 

orthographic, and phonological similarity, in the proximity of the N170 component – see 

Discussion for the relationship between orthographic and phonological similarity. For 

semantic similarity, the correlation reached significance only for two brief intervals (372 – 

392ms and 748 – 758ms). 



As expected, given the nature of the experimental task and the location of the signals 

considered, the largest correlations were found between EEG-based estimates and measures 

of visual similarity. To clarify and to visualize the nature of the specific information 

structuring the EEG-based similarity space we proceeded in two steps. First, we constructed a 

visual word space by applying metric multidimensional scaling (MDS) to pairwise word 

classification – see Figure 5a for an example based on the data of a single representative 

participant. Then, we synthesized classification images (CIMs), through a linear combination 

of stimulus images, separately for each of 20 dimensions of this space, with the aim of 

capturing the visual information underlying the topography of the space.  

An examination of the corresponding CIMs showed their potential value in encoding 

orthographic information - for instance, the first dimension in Figure 5b appears to encode 

the difference between the vowel “i” on the one hand, and the vowels “o” and “u” on the 

other. Overall though, CIMs appear to summarize visual features that go beyond the shapes 

of letters present at a single position. 

 

Visual word image reconstruction 

Word image reconstruction was carried out next by linear combinations of CIMs in an 

effort to approximate the visual appearance of novel stimuli (i.e., CIMs were systematically 

derived from 79 stimuli and then used to reconstruct one left-out stimulus). Then, 

reconstruction accuracy was assessed objectively based on pixelwise image similarity 

between reconstructions and stimuli (see Figure 6 for examples of reconstructions). 



This analysis was carried out, first, for temporally cumulative data between 50 and 

650ms separately for each participant. Mean reconstruction accuracy across participants was 

71.2% (SD = 6.3%; t(13) = 12.55, p < 0.001). In addition, permutation tests confirmed that 

each of the 14 participants yielded above-chance reconstruction accuracies (p’s < 0.01) An 

examination of classification accuracy and reconstruction accuracy also revealed that the two 

estimates were highly correlated across participants (r = .86, p = 0.0001) – see Figure 2. (For 

an additional evaluation of reconstruction accuracy, its robustness and its relationship with 

pairwise visual word similarity see Supporting information, Visual similarity and image 

reconstruction.) 

Further, the time course of reconstruction accuracy was examined for consecutive 

10ms windows between -100 – 800ms. In agreement with the time course of word 

classification, reconstruction performance reached significance shortly after 100ms and 

peaked at 190ms in the proximity of the N170 ERP component, M = 63.5%, SD = 5.7% - see 

Figure 3b. For an illustration of word reconstruction across time see also Movie 1. 

To further boost accuracy, we considered the possibility that averaging the similarity 

matrices of the participants may increase the signal-to-noise ratio (SNR) of the data used for 

reconstruction purposes (Cowen, Chun, & Kuhl, 2014; Nemrodov et al., 2018). Specifically, 

a single average similarity matrix across the 14 participants was used for word space 

derivation, feature synthesis and word reconstruction. This manipulation led to robust 

performance over time; for instance, peak performance reached 70.4% (Figure S3) compared 

to the 63.5% average obtained for single-participant reconstructions. In addition, temporally-

cumulative reconstruction reached 84.5% accuracy (p = 0.001, permutation test) which is 



significantly higher than the corresponding results of any single participant (all p’s < 0.001, 

permutation test).  

To further explore the generalizability of our reconstruction results, we compared the 

reconstructed words not only to the 80 words in our stimuli set, but to all possible CVC 

pseudo/words constructed by considering all possible combinations of letters occurring in 

each position in our stimuli set, for a total of 750 pseudo/words. The average reconstruction 

accuracy was slightly lower (M = 68.8%, SD = 5.1%; t(13) = 7.37, p < 0.001), but still well 

above chance. 

A complementary assessment of group-based reconstruction results also considered 

experimental data, instead of objective pixelwise similarity, from a novel group of 20 naïve 

participants. Specifically, data from a two-alternative forced choice (2AFC) task involving 

the match of word reconstructions to their stimulus targets (vs any possible stimulus foil) 

confirmed that reconstructions were successful (M = 81.8%, SD = 6.6%; two t-test against 

50% chance across participants, t(19) = 21.56, p < 0.001).  

 

Visual letter reconstruction 

To bridge our results with previous investigations into single-letter reconstructions, 

we proceeded to compute the reconstruction accuracy for each letter position. Of note, this 

analysis can reveal potential differences in accuracy across different letter positions and, also, 

facilitate an examination of the contribution of each letter position to whole-word image 

reconstruction. 



To this end, we assessed group-based reconstruction accuracies separately for each 

position. This analysis revealed that the middle vowel has the highest reconstruction accuracy 

relative to the first consonant (paired permutation test, p = 0.001) and the last consonant 

(paired permutation test, p = 0.001) – see Figure 7. 

The result above is particularly intriguing given the importance of consonants for 

word recognition (Vergara-Martínez, Perea, Marín, & Carreiras, 2011). Two possible 

mechanisms might be responsible for this difference across letter positions. The first 

possibility concerns the central position of the vowel at fixation and thus, its privileged 

encoding in the EEG signal. In other words, the vowel may be better reconstructed because 

there is more information related to its visual processing in the EEG signal. Another 

explanation stems from the fact that vowels might be objectively more discriminable than 

consonants, for instance, because there are fewer vowels than consonants in Roman scripts. 

To examine this latter possibility, a visual theoretical observer was constructed based 

on a similarity matrix derived from the objective pixelwise image similarity of the original 

stimuli (see Methods). The theoretical observer assumes access to all visual information, thus 

providing a theoretical upper limit for EEG-based reconstruction. The overall accuracy of this 

theoretical observer for entire words was 98.9% - see Figure 7. 

More relevant to the current question, we computed the reconstruction accuracy for 

each letter position, and found, in this case, no apparent advantage of the middle vowel 

relative to the first and last consonant of the word (Figure 7). Hence, differences in accuracy 

across position emerge from the structure of empirical data rather than from the nature of the 



method or from the visual properties of the stimuli. In particular, performance for vowels was 

not superior because vowels are more visually discriminable than consonants. 

Another possibility we considered is that letters more frequent in the stimulus set at a 

given position are more accurately reconstructed due to the overrepresentation of their visual 

features in the derived CIMs. However, a correlation between relative letter frequency and 

letter reconstruction accuracy did not reveal any significant correlation at any position (all 

p’s > 0.05). Therefore, the higher EEG-based reconstruction accuracy of the middle vowel 

appears to be due to its central placement in the visual field rather than a direct outcome of 

the objective properties of the stimulus set. The central position of the vowel along with the 

smaller number of vowels relative to consonants may lead participants to assign more weight 

to vowel information. At the same time though we do point out that the results above indicate 

above-chance sensitivity to all letter positions. 

Relevantly here, while vowels yield higher reconstruction accuracies relative to 

consonants, they may have lower discriminative value for word identification and 

reconstruction. Specifically, reconstructed vowels only distinguish between 5 sets of words 

containing 5 different potential vowels while consonants can distinguish between 

substantially more sets of words containing 15 and 10 different potential consonants in the 

first and the third position, respectively. To address this possibility, we have conducted an 

additional analysis aimed at clarifying the contribution of each letter position to word 

reconstruction. Specifically, we have correlated reconstruction accuracy for each letter 

position with word reconstruction while partialling out the contribution of the other two 

positions. This analysis was conducted across the 80 word stimuli for participant-averaged 



reconstruction estimates. Interestingly, the results showed that both the first consonant and 

the last made significant contributions to word reconstruction (r = 0.72, p < 0.001 and r = 

0.61, p < 0.001, respectively) while the vowel only made a marginally significant 

contribution (r = 0.19, p = 0.097).  

Thus, while vowel reconstruction shows the highest levels of reconstruction accuracy 

per position, it contributes the least to word reconstruction. This result provides further 

evidence for the ability of reconstruction to capture information across multiple letter 

positions and, also, it provides convergence with the importance of consonants for word 

recognition, as noted above (Vergara-Martínez et al., 2011). 

 

Individual differences 

While the analyses above capitalize on the similarity of data structure across 

participants to boost overall reconstruction accuracy, conversely, it is important to consider 

individual variability and the source of such variability in our data. From a methodological 

standpoint, this analysis could also inform the ability of reconstruction techniques to shed 

light on individual differences in perception more generally. 

To this end, first, we computed typicality estimates based on the reconstruction 

accuracies of each participant. Specifically, the typicality of one participant was measured as 

the correlation between the reconstruction accuracies of all 80 stimuli from that participant 

and the average reconstruction accuracies from all other participants. All typicality estimates 

were above chance (all p’s < 0.001) in agreement with the presence of similar data structure 

across participants, as noted above. At the same time, an examination of typicality and 



accuracy across participants (Figure S4) showed no systematic relationship (Spearman 

correlation, p = 0.45). Thus, the reconstruction procedure is effective even for less typical 

participants and its success is not impacted by participant typicality. 

For completeness, we also estimated the typicality of group-based reconstructions, 

relying on an average confusability matrix, and of the theoretical observer. Specifically, these 

estimates were computed as the correlation between the corresponding reconstruction 

accuracies across 80 words and the average reconstruction results across all 14 participants. 

As expected, group-based data scored high on typicality given that they rely primarily on a 

data structure common across participants (Pearson correlation, r = 0.89, p < 0.001). In 

contrast, the theoretical observer, while still significant, scored low on typicality (r = 0.38, p 

< 0.001). This is consistent with our results above indicating that the theoretical observer 

stands out from human data, for instance, through better access to visual information relating 

to the first and last consonant of a word. 

Further, to identify and to visualize individual differences in the representation of 

words across participants, we computed the average reconstruction accuracy of all words 

separately for each pixel and each participant. Then, PCA was conducted across the heatmaps 

of all participants – see Figure 8a. Lastly, we computed averages of these maps, separately 

for each PCA dimension, weighted proportionally to the z-scored coefficient corresponding 

to each participant on a given dimension. Thus, such weighted sums provide new CIMs 

illustrating different sources of participant variability. An examination of these CIMs (Figure 

8b) indicate that individuals vary primarily in their ability to capture information in the 

central position, as illustrated for the first principal component. However, additional visual 



cues, such as the lower part of the last consonant illustrated for the second component, are 

also a source of individual variability. 

 

Additional psycholinguistic analyses 

While our investigation is primarily focused on visual-orthographic processing of 

single words, an exploration of multiple psycholinguistic variables and their impact on word 

decoding could be informative. Specifically, such an exploration may provide a more 

complete picture of the perceptual and linguistic processes underlying reading and pave the 

way for dedicated studies of such processes relying on pattern analyses of EEG signals. 

Accordingly, to explore the dependence of word classification on a variety of 

psycholinguistic variables, multiple regression analysis was conducted to account for the 

average EEG-based discriminability of each word across participants. To this aim, we 

considered seven psycholinguistic measures estimated across English words irrespective of 

length and format (i.e., not just CVC). Specifically, we considered: positional letter 

frequency, positional letter-bigram frequency (i.e., sublexical covariates), word frequency, 

orthographic Levenshtein distance, number of orthographic neighbors, phonological 

Levenshtein distance and number of phonological neighbors. Each of these measures was 

correlated with the discriminability of each word, computed as the average accuracy of its 

EEG-based classification across a 50-650ms interval from all other 79 words. Of note, we 

considered here EEG classification rather than reconstruction results, since the latter depend 

on the former. Also, we reasoned that reconstruction captures primarily visual aspects of 



neural processing while decoding may be facilitated by multiple linguistic properties of the 

stimuli and, thus, contain a richer and more diverse structure. 

The results of this analysis pointed to word frequency (b = 5.04e-05, t(72) = 2.48, p = 

0.015) and the number of orthographic neighbors (b = 0.01, t(72) = 2.05, p = 0.044) as 

significant predictors making an independent contribution to accounting for EEG data. To 

assess the robustness of these results we performed this analysis again using psycholinguistic 

measures estimated exclusively across CVC words. This analysis rendered qualitatively 

similar results, though the number of orthographic neighbors only provided a marginally 

significant contribution this time (b = 0.02, t(72) = 1.87, p = 0.066). (For an additional 

examination of these measures with respect to their impact on individual differences, see 

Supporting information, Psycholinguistic variables and individual differences.) 

To align our current results with the literature, we repeated the multiple regression 

analysis for the average EEG-based discriminability of each word across participants with 

psycholinguistic measures obtained from the UNION database while taking the natural 

logarithm of SUBTL word frequency. This analysis showed similar numerical trends to the 

raw frequency data but did not reach statistical significance. 

The pairwise EEG-based word discriminability for every 10ms interval was also 

correlated with the corresponding estimates of semantic similarity obtained from the 

word2vec model (Mikolov, Chen, Corrado, & Dean, 2013). No significant correlations were 

found. 

 

 



Discussion 

Reading relies on the ability to identify words quickly and reliably by access to their 

visual-orthographic characteristics (Carreiras, Armstrong, Perea, & Frost, 2014; Perfetti, 

2007; Verhoeven, Reitsma, & Siegel, 2011). The present work aims to uncover the structure 

of underlying word representations with the aid of pattern analysis and reconstruction 

techniques as applied to EEG data. Our results demonstrate the feasibility of decoding and 

reconstructing visual words from neural data. These results evince several noteworthy 

aspects, as follows. 

First, word decoding reveals a representational space shaped by visual and 

orthographic features consistent with that found by fMRI investigations of the visual word 

form area (vWFA) (Baeck et al., 2015; Nestor et al., 2013). Specifically, sensitivity to letter 

identity is found for every letter position across a relatively large and well-controlled pool of 

words (e.g., having the same length and CVC structure). Of note, orthographic similarity 

accounts for the structure of the data beyond pure visual similarity, suggesting sensitivity to 

visual forms more abstract than the pictorial content of a given stimulus (Carreiras, 

Armstrong, & Dunabeitia, 2018). Additional correlations between decoding accuracy, on one 

hand, and word frequency and the number of orthographic neighbors, on the other, also 

confirm the impact of linguistic processing on our results.  

Second, visual word features were derived directly from the structure of the EEG data 

and used for the purpose of word image reconstruction. Previous work has reconstructed 

single characters such as letters from fMRI patterns in visual cortex (Schoenmakers et al., 

2013; Shen et al., 2017; Thirion et al., 2006) or visualized their representation through 



psychophysical methods (Gosselin & Schyns, 2003) – see also complementary work (Pasley 

et al., 2012) targeting ECoG-based speech reconstruction. In contrast, the current results 

demonstrate, for the first time to our knowledge, the ability to reconstruct the visual 

appearance of whole words from neural recordings. Specifically, accuracy was above chance 

for every letter position confirming that reconstruction retrieves the appearance of the entire 

word rather than of a single later. Of note, reconstruction accuracy was well above chance for 

every participant (range: 58% - 77%) and even higher when combining the data of multiple 

participants (84.50%). Thus, reconstruction results are quite robust and, moreover, they serve 

to clarify and to visualize the information underlying neural decoding. 

Third, we find that the time course of decoding and reconstruction peaks around 

200ms after stimulus onset, in the proximity of the N170 component, but reaches significance 

earlier, soon after 100ms. These findings are consistent with access to lexical orthographic 

information for familiar words between 100 and 200ms (Araújo et al., 2015; Dufau, Grainger, 

Midgley, & Holcomb, 2015; Hauk et al., 2006; Sereno, Rayner, & Posner, 1998) as well as 

with the significance of the N170 component for orthographic processing, presumably driven 

by a vWFA neural generator (Brem et al., 2006). Interestingly though, cross-temporal 

generalization as well as temporal cumulative analyses suggest the presence of 

complementary information across an extended temporal interval, roughly between 100-600 

ms. One likely explanation for this result is a quick and efficient reading mechanism that 

allows subsequent refinement, as illustrated by the need to distinguish between highly 

confusable words (Hirshorn et al., 2016).  



Fourth, we find that participants vary considerably in how typically they represent 

words relative to one another, yet that does not determine reconstruction success. More 

importantly, we extract visual templates that account for individual differences in word 

representations. These templates reveal differences in sensitivity to the visual encoding of the 

middle vowel as well as of the lower part of the last consonant, possibly related to different 

reading strategies and/or different types and degrees of language experience (Seidenberg & 

MacDonald, 2018). Thus, neural-based image reconstruction can shed light on visual-

orthographic differences in reading and, in doing so, complement the extensive work on 

phonological and semantic individual differences (Brady, Braze, & Fowler, 2011). 

More generally, from a methodological standpoint, the current findings demonstrate 

and illustrate the ability of EEG signals to support the recovery and the visualization of fine-

grained neural representations, such as those supporting reading. Recent work(Nemrodov et 

al., 2018) has demonstrated the feasibility of EEG-based image reconstruction for human 

face stimuli. Here, we confirm this demonstration by appeal to a new class of visual stimuli 

and, thus, open the door to more extensive and varied applications of image reconstruction to 

EEG data. 

Of particular interest in this sense is clarifying the nature of the representations 

accessible through reconstruction. The differential retrieval of information across letter 

positions, as reported above, may speak to this issue. Specifically, the privileged encoding of 

the middle vowel, likely driven by its central fixation, suggests access to more general, early 

visual representations. Given the importance of consonants for word recognition (Vergara-

Martínez et al., 2011), it is possible that such representations are subsequently refined into 



more abstract ones, subject to language-specific constraints, such as the need to identify 

consonants correctly. At the same time, we note that orthographic word processing relies on 

flexible representations sensitive to task demands (Chen et al., 2015; Yang & Zevin, 2014). 

Hence, a different experimental task involving deeper lexical-semantic processing than the 

one-back memory task used here, may provide access to higher-level word representations.  

Relevantly here, an important challenge for future work concerns the ability to 

reconstruct the appearance of entire sentences rather than single words through the use of 

image reconstruction methods relying on more complex combinations of visual and 

psycholinguistic features. This would allow investigating the interplay of multiple factors 

impacting discourse (Van Berkum, Brown, Zwitserlood, Kooijman, & Hagoort, 2005), 

including semantics and phonology, which largely fell outside the scope of the present work. 

In particular, the nature of the experimental task as well as the large number of word 

repetitions likely diminished our ability to capture semantic effects (Rossell, Price, & Nobre, 

2003; Rugg, 1985). Also, in the absence of words with irregular pronunciation, the 

correlation of phonological and orthographic properties made difficult disentangling their 

distinct contributions to neural processing. Thus, it is possible that the structure of the EEG 

data also reflects phonological effects, especially given the role of rapid phonological 

feedback to posterior visual areas in stabilizing grapheme string representations. The 

extension of our present findings to different stimulus sets and languages with more complex 

grapheme-phoneme mapping will be particularly relevant in this respect and, also, help assess 

their cross-linguistic validity (Rueckl et al., 2015; Share, 2008). 



Importantly, the evaluation of individual differences, as illustrated above, carries 

relevance for the study of dyslexia. Impaired visual expertise for print appears to play a role 

in the development of at least some subtypes of dyslexia (Helenius, Tarkiainen, Cornelissen, 

Hansen, & Salmelin, 1999; Maurer et al., 2007; Paulesu et al., 2001). Hence, image 

reconstruction could provide a valuable means of revealing impaired visual processing and 

representations in individuals with dyslexia and of refining our understanding of the subtypes 

of this disorder (Zoubrinetzky, Bielle, & Valdois, 2014). 

To conclude, our work illustrates the benefit of a new approach to the study of visual 

word representations. Theoretically, our results help to uncover the visual-orthographic 

structure of such representations as well as the temporal dynamics of their processing. 

Methodologically, they showcase the ability of pattern analyses as applied to EEG data to 

reveal the fine-grained structure of neural representations. More generally, the current work 

paves the way to in-depth studies of reading, via EEG-based image reconstruction, in healthy 

individuals as well as in those with visual deficits. 
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Figure legends 

 

 

Figure 1. Procedure for visual word decoding and reconstruction: (a) ERP traces across 12 

bilateral occipitotemporal (OT) electrodes were recorded for each; (b) linear classification 

was conducted across the corresponding spatiotemporal patterns; (c) discriminability 

estimates were summarized by a similarity matrix; (d) a 20-dimension word similarity space 

was estimated from the similarity structure of the data using a leave-one-out procedure (only 

two dimensions are displayed here for visualization purposes); (e) visual features were 

derived for each dimension and evaluated for the presence of significant visual information, 

and (f) a word image corresponding to the left-out stimulus was reconstructed though a linear 

combination of significant features. 

 

 



 

Figure 2. Accuracy of word classification and image reconstruction, based on a 50-650ms 

temporal window, for each of 14 participants. Estimates were above chance for all 

participants (p’s < 0.01, permutation test). Classification and reconstruction accuracies were 

comparable in magnitude and correlated across participants (r = 0.86, p = 0.0001). 

 

Figure 3. (a) The time course of word discrimination revealed by pattern classification for 



9.75 ms windows between -100 – 800ms. Classification reached significance at 114ms post-

stimulus onset and peaked at 200ms. (b) The time course of reconstruction obtained by 

performing image reconstruction for 9.75 ms windows between -100 – 800ms. Performance 

reached significance at 125ms post-stimulus onset and peaked at 190ms (gray shading marks 

intervals of above-chance accuracy, two-tailed one-sample t-test, q < 0.01; blue/red shading 

marks 95% confidence intervals across participants). 

 

 

Figure 4. Correlations between EEG-based word discriminability (i.e., average accuracy of 

pairwise word classification) and estimates of visual, orthographic, phonological and 

semantic similarity. Word discriminability, estimated for 9.75 ms windows between -100 – 

800ms, was significantly correlated with the first three measures across extensive intervals, 

but only briefly with semantic similarity (color bars at the top mark intervals of significant 

correlation, q < 0.01). 



 

 

Figure 5. Example of (a) multidimensional word space derived from a 50-650ms temporal 

window, and (b) CIMs corresponding to the first two dimensions synthesized from this word 

space through image classification. For convenience, the figure shows only the first two 

dimensions for one representative participant (the two dimensions account for 7.6% and 6.5% 

of the variance, respectively). 

 

 

Figure 6. Examples of stimuli and reconstructed words based on a 50-650ms temporal 

window from a single representative participant. The first row shows word stimuli and the 



second row displays corresponding reconstructed word images. The values at the bottom left 

of each image indicate objective accuracy based on pixel-wise image similarity. The values at 

the bottom right indicate experimental estimates from a separate group of participants. The 

superior performance of reconstruction in the vowel position, relative to the two consonant 

positions, can be observed in the figure. 

 

 

Figure 7. Reconstruction accuracy for whole words was first calculated from the group-based 

average data, based on a 50-650ms temporal window, and, also, based on the theoretical 

observer. Reconstruction accuracy was then calculated separately for each letter position. The 

advantage of the middle vowel was apparent for EEG data but not for the theoretical observer 

(permutation test, ***, p < 0.001). 

 



 

Figure 8. Individual differences in word reconstruction based on a 50-650ms temporal 

window. (a) PCA was applied to pixelwise accuracy heatmaps (for convenience, only the first 

two PCs are plotted). Each blue dot represents one of 14 participants while orange marks 

group-averaged data and green marks the theoretical observer. (b) Classification images were 

computed for each component to illustrate sources of individual variability: heatmaps 

illustrate components of variability in pixelwise reconstruction accuracy across participants. 

Specifically, PC1 indicates that participants vary primarily in how accurately they represent 

the vowel in the central position while PC2 indicates that participants also vary in how 

accurately they represent the bottom part of the second consonant. 

 


