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Abstract
Can a person be identified uniquely by some feature of 
their neural activity, as they can be by fingerprints?  If so, 
1) what  would those features be like and 2) are existing 
computational methods sufficient to extract them?  Here, 
we explore these questions by coordinating 
psychophysiological and machine learning approaches.  
We begin with the proposition that one unique feature of 
individual cognition is the detailed network of concepts, 
and relationships between concepts, that are present in 
each individual’s semantic memory.   We then 
demonstrate that we are able to  accurately classify 
individual unlabeled brain activity—in the form of 
Event-Related Potentials (ERPs) elicited during a task 
that probes semantic memory—to the individual  it 
belongs to with several pattern classifiers.  These results 
demonstrate that it is possible to  identify individuals on 
the basis of unique features of their brain activity.  
Biometric applications are discussed.
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Introduction
Each of us has a sense that our individual cognitive 
worlds--our selves-- are unique.   In a materialist 
epistemological framework, the self is instantiated by 
the brain, and thus it is the brain and its workings that 
make our selves unique.  This sense is codified in 
modern cognitive science and cognitive neuroscience 
by the idea of individual differences, which is the 
acknowledgement that not all brains are identical, and 
not all individuals engage cognitive processes in an 
identical manner (see, for example, Daneman & 
Carpenter, 1980; Raz et al., 2005).   The idea of 
individual differences is taken to its extreme in the field 
of biometrics, where it is assumed not only that 
individuals differ on some measure (e.g., fingerprint or 
retinal topography), but that individuals are unique on 
those measures.  In this field, the EEG signal is starting 
to be considered as an identification characteristic (see 

for example, Jian-feng, 2010; Palaniappan & Mandic, 
2007); however, the prior work has not substantially 
interfaced with what is understood about the cognitive 
processes that impact an individual’s EEG or ERPs.
	
 One well-understood cognitive system that seems 
likely to differ uniquely between individuals is semantic 
memory, defined here as a memory network of concepts 
and relationships between concepts.  As an example of 
how individuals’ semantic networks differ, consider the 
concepts [bee] and [anaphalaxis].  Even with only these 
two concepts, there are a number of plausible associated 
states in semantic memory that might be instantiated in 
individuals:  an individual might not know what either 
of these things are, or might know both of them, or only 
one or the other.  A person with a bee allergy might 
strongly associate the two concepts, while a person with 
no bee allergy might not associate them at all, or 
associate them only weakly.  Of course, there are many 
more concepts and relationships that can be represented 
than bees and anaphalaxis, and the more concepts and 
relationships that need to be represented, the less likely 
any two people are to represent them in exactly the 
same way (i.e., as the pool of possible concepts grows 
beyond only [bee, anaphalaxis] to a larger pool like 
[bee, anaphalaxis, snake, spider, chocolate, prawn, 
cilantro, clown], and then to larger pools and so on, it 
becomes less and less likely for all concepts and 
relationships to be represented the same way in multiple 
individuals).  Although it seems plausible that there are 
numerous neuro-cognitive systems that distinguish 
between individuals, semantic memory, as we will see 
below, produces a large, robustly studied 
electrophysiological response that has already been 
demonstrated to vary across individuals (although not 
necessarily produce unique responses across 
individuals).



A Neural Measure of Semantic Memory
Attempts to access semantic memory are known to 
elicit a large, robust, electrophysiological response 
known as the N400.  The N400 is a negative going 
Event-Related Potential (ERP)  component that peaks at 
approximately 400 ms post stimulus onset, and is 
maximal over the back of the head.  The N400 is 
strongly sensitive to numerous manipulations of 
semantic memory including, but not limited to, 
violations of sentence context, semantic priming, 
imageability, concreteness, and number and strength of 
lexical associations (see Kutas & Federmeier, 2011, for 
review).   Importantly, we have demonstrated in past 
work that the N400 is sensitive to whether or not a 
particular visual word form has meaning to an 
individual participant.  Specifically, when participants 
are presented with a large variety of acronyms (e.g., 
DVD, NPR), individuals present larger N400s to 
acronyms they are familiar with than to acronyms they 
are not familiar with (see Laszlo & Federmeier, 2007).  
This is taken to mean that when an unfamiliar item is 
presented, the system is less able to make contact with 
concepts in semantic memory than when a familiar item 
is presented.  
	
 Participants are able to identify, on average, 83% of 
75 acronym items in our stimulus list-- 62 items.  There 
are 1.2 x 1014  possible ways to randomly choose 62 
items from a set of 75, which quantifies the idea that it 
is very unlikely for any 2 people to have an identical 
profile of familiar and unfamiliar items when the set of 
items is of sufficient size (and, in fact, no two 
participants had exactly the same pattern of known and 
unknown items in this dataset).  In what follows, we 
exploit the known variation in what acronyms are 
familiar to individual participants as one possible 
source of a signal that is unique to individuals.  Other 
sources include individual variation in neural anatomy 
that result in slightly different sizes and distributions of 
ERPs across the scalp and slightly different timing of 
the N400 and the ERP components that precede it -- 
each of these factors is represented in the data on which 
we performed pattern classification.

Machine Learning:  Pattern Classification
A wide variety of pattern classifying algorithms exist 
that could, in principle, be applied to the problem under 
study (for extensive review, see Bishop, 1995).  Here, 
we focus on the performance of three methods that past 
work suggests should be well-suited for identifying 
unique features in distributed, high-dimensional 
representations of neural activity (such as the 
temporally extended ERP signal).  The simplest method 
we considered was creating a simple linear discriminant 
based on the normalized cross-correlation between pairs 

of waveforms (i.e., labeling a test waveform as 
belonging to an individual if that waveform had a 
higher cross-correlation with another waveform from 
the same individual than with waveforms from any 
other individuals). This method is based on the intuitive 
notion that, if brainprinting is possible,   overall, 
waveforms elicited by the same person should be more 
similar than waveforms elicited by different people, and 
also on past work suggesting that cross-correlation is an 
effective means of measuring EEG waveform similarity 
(e.g., Chandaka & Chatterjee, 2009).  However, this 
method is not especially flexible; for example, it gives 
equal weight to similarities in all portions of the 
waveform, even though the most important 
similarities-- those reflecting similar semantic memory 
networks-- should occur in temporally specific portions 
of the waveform, and should therefore likely be 
weighted more heavily by the pattern classifier.
	
 Pattern classifiers with increased flexibility, such as 
the ability to learn, are therefore appealing for the 
brainprint problem.  It is advantageous for the classifier 
to be able to learn what parts of the waveform are most 
important in telling people apart, and what parts are 
either not informative or anti-informative.  Here, we 
considered two learning classifiers that seemed to us to 
be particularly likely to be able to solve this problem.  
These are Divergent Autoencoder (DIVA; Kurtz, 2007) 
and Naive Discriminant Learning (see Baayen, Milin, 
Durdevic, Hendrix, & Marelli, 2011).  The divergent 
autoencoder is a feed-forward neural network 
architecture that provides an alternative to the 
multilayer perceptron (MLP) for applying the 
backpropagation algorithm to classification tasks. In 
contrast to the MLP, which has a single output node for 
each possible classification, DIVA has a full copy of the 
input layer (a “channel”) corresponding to each possible 
classification.  The key design principle is training the 
autoencoder to reconstruct the members of each 
category with the constraint that each autoassociative 
channel shares a common hidden layer.  Classification 
outcomes are a function of reconstruction error: an item 
is a good member of a class to the extent it can be 
recoded and decoded along the appropriate channel 
with minimal distortion. Kurtz (2007) originally 
developed DIVA as a cognitive model of human 
category learning; research is currently in progress that 
establishes the wider potential of DIVA networks as a 
highly effective, general-purpose classifier for machine 
learning. 
 	
 NDL was selected as an alternate method as it has 
recently received considerable attention both because of 
its ability to account for classification phenomena 
across domains and because its computational 
characteristics make it well-suited for modeling large 



data sets that would typically be extremely 
computationally expensive for related connectionist 
models.  This advantage is due in part to the derivation 
of equilibrium equations (Danks, 2003) that allow for 
the rapid calculation optimal weights, which enables the 
training of NDL models on extremely large data sets 
(because the input to the models here is an entire ERP 
waveform, for an input layer size of 550 units, the 
present problem is substantially larger in size than many 
cognitive modeling problems).    Similar to many other 
machine learning algorithms, however, it is capable of 
learning to weight the contributions of different input 
dimensions based on their informativeness, allowing the 
algorithm to “focus in”  on the most relevant dimensions 
of inputs for discrimination.
	
 In what follows, we assess multiple metrics of 
accuracy for each of these classification methods in 
identifying unlabeled exemplar ERPs, with the goal of 
determining whether any of these techniques is able to 
learn to extract unique features of individual brain 
waves.  

Method:  ERPs
ERPs were drawn from an existing corpus of ERP 
visual word recognition data.  These data were acquired 
in an experiment following the methods of our past 
studies demonstrating individual differences in N400s 
on the basis of individual acronym knowledge (Laszlo 
& Federmeier, 2007).  In this study, EEG was recorded 
from 32 adult participants (11 female, age range 18-25, 
mean age 19.12) who silently read an unconnected list 
of text.  EEG was digitized at 6 midline electrodes sites.  
Participants viewed 75 acronyms that each repeated 
once at a lag of 0, 2, or 3 intervening items, in addition 
to several other item types (words, pseudowords, and 
illegal consonsant strings) not analyzed in the present 
work. Participants were instructed to press a button on a 
gamepad when their name was presented on the screen. 
This task was given in order to ensure that participants 
were actively engaged in the experiment and attending 
to critical items (words, pseudowords, acronyms, and 
illegal strings) without contaminating waveforms 
elicited by critical items with response potentials. 
	
 That repetition was included in this design allows for 
homogenous but non-overlapping segmentation of the 
data into train and test corpora for machine learning:  
first responses to acronyms were used for training, and 
second responses were used for testing.    ERPs were 
computed at each electrode time-locked to the onset of 
each of the four critical stimulus types, on each of the 
two presentations (e.g., words, first presentation; 
acronyms, second presentation). For a more detailed 
description of the methods, see Khalifian (2013).

	
 Note that this experiment was designed primarily as a 
study of written language comprehension, not as a study 
of individual differences in psychophysiology.  While 
the dataset does include responses that are likely to be 
non-identical across participants, as discussed, these 
differences were not maximized by design.  For 
example, while the items are not likely to be 
represented identically by any two participants, they are 
relatively benign (e.g., DVD, NFL) and therefore not 
likely to elicit individual reactions that are particularly 
strong or idiosyncratic.  A more targeted design might 
feature items more likely to have stronger individual 
differences; for example, words with strong affective 
loadings (e.g., SPIDER, CLOWN), or low frequency 
words likely to be known by some but not all 
participants (see Ramscar et al., 2014).   
	
 Similarly, because this experiment was not designed 
as a study of individual differences, relatively few trials 
were acquired from each participant, in anticipation of 
data analysis of group, as opposed to individual, 
averages, as is typical for ERP language experiments.  
The high signal to noise ratio in ERPs could prohibit 
meaningful averages from being formed from 
individuals with so few trials available.  The non-
targeted design of the corpus from which data for 
classification were drawn, as well as the relatively low 
signal to noise present in ERPs with so few trials, will 
both provide challenges to our classifiers.  If we are 
able to achieve accurate classification in spite of these 
challenges, we will have reason to believe that our 
classification methods are robust.

Method:  Pattern Classifiers
Training data for the classifiers was comprised of 
responses to the first presentation of acronyms; test data 
was comprised of responses to the second presentation 
of acronyms.  The training and test data were thereby 
completely non-overlapping.   After EEG artifact 
rejection, each participant contributed 70 trials to both 
data sets (some participants had more than 70 trials left 
after artifact rejection; from these 70 random trials were 
selected).     One average per participant was not 
considered to be sufficient training data for the neural 
network classifiers.  Therefore, 100 ERPs consisting of 
random averages of 50 of the 70 trials were made for 
each participant, resulting in 3200 averages (100 
averages for each of the 32 participants) of 50 trials 
each to use as inputs for neural network training.  
Similarly, 100 random averages of 50 trials per 
participant were formed from the test data for network 
evaluation.



Cross-Correlation
To classify by cross-correlation, we first computed the 
maximum absolute value of the cross-correlation 
between pairs of waveforms (see Chandaka, Chatterjee, 
& Munshi, 2009).  These pairs could be self-self pairs 
(i.e., one of the 100 averages from subject 1’s training 
corpus and one of the 100 averages from subject 1’s test 
corpus)  or self-other pairs  (i.e., one waveform elicited 
by subject 1 and another elicited by subject 2, or subject 
3, and so on, for a total of 31 self-other pairs).  The 
cross-correlations between pairs were then divided by 
the norm (or vector length) of the pair, in order to 
reduce variability caused by scalp thickness and other 
cognitive-unrelated events, allowing consistency in 
magnitude within cross-correlation results; data were 
also high-pass filtered during recording to eliminate 
variability due to DC shifts..   The output of this 
operation was then ranked, with the highest ranked pair 
being this classifier’s guess as to which two waveforms 
were elicited by the same subject.  This ranking method 
allows for the accuracy of the cross-correlation 
classifier to be analyzed identically to the accuracies of 
the other classifiers, as described below.

Divergent Autoencoding (DIVA)
The DIVA network was a 550:200:550[32] feedforward 
autoencoder.  The 550 input nodes corresponded to the 
550 samples in the ERP waveforms; thus the entire 
waveform was veridically presented to the network.  
The [32]  signifies that, instead of having only one 
output layer representing the reconstruction of the input, 
as in a standard autoencoder, there were 32 output 
layers, one for each possible “classification” by the 
network of the input data (i.e., the model is making a 

32-way classification; see Kurtz, 2007, for details).  The 
200 unit hidden layer was shown to be the smallest size 
that would enable near-perfect learning of the training 
set in pilot simulations.  On each supervised training 
trial, hidden-to-output weights were adjusted only along 
the correct category channel.   The input-to-hidden 
connections followed a sigmoidal activation function; 
the hidden-to-output connections followed a linear 
activation function.  The network was trained for 1000 
iterations; this was determined to be a level that allowed 
satisfactory (>99%) train performance without 
overfitting via prior validation simulations.   After these 
1000 iterations, weights in the model were fixed. 
	
 At test, the model was presented with each of the 
3200 test examples, and activation was allowed to 
propagate through the network.  Reconstruction error 
was measured on each output channel.  The channel 
with the least output error was assigned rank 1 for that 
trial, the channel with the 2nd least output error was 
assigned rank 2 for that trial, and so on.  Again, 
assigning ranks to the model’s outputs allows for its 
accuracy to be analyzed in a manner identical to that 
used for the other classification methods.  Figure 1 
displays an example of an empirically derived ERP 
along with its best and worst DIVA reconstruction.  
Note that, as was expected, the DIVA classifier learned 
to emphasize some parts of the input waveforms over 
others.

Naive Discriminant Learning (NDL)
The NDL model was trained using a slight extension of 
the NDL algorithm developed by Shaoul, Arppe, 
Hendrix, Milin, and Baayen (2013).  Essentially, this 

0 1 sec.

- 8µV

Subject 1:  True ERP Subject 1:  DIVA 
best reconstruction 
[Rank 1]

Subject 1:  DIVA 
worst reconstruction 
[Rank 32]

Figure 1.  Sample Data and DIVA Reconstructions.  On the left, a true ERP elicited by Subject 1.  In the middle, the best 
DIVA  reconstruction of that ERP after training.  On the right, the worst DIVA reconstruction of that ERP after training.  
Notice that DIVA’s best reconstruction appears as a slightly filtered version of the true ERP, with activity in early 
temporal epochs emphasized.



model can be considered as a two layer network with 
550 inputs, corresponding to each sample of the full 
ERP waveform, and 32 outputs, corresponding to each 
of the participants who may have generated the 
waveform.  This network was trained using the Danks 
(2003) equilibrium equations to identify threshold 
values and weights for above-and below-threshold 
inputs that should be fed forward to each of the output 
units, to maximize the activation of the correct output 
and minimize the activation of the incorrect outputs.  
The use of these equilibrium equations effectively 
allows for the weight matrix that would be discovered 
by iterative discriminative learning across the training 
examples (e.g., as in back-propagation) to be derived in 
a single sweep through the corpus.  Following training, 
the threshold values and weights were fixed and were 
used to generate the predicted outputs for the testing 
data set.  Activation of the output units was then ranked 
to generate an analogous set of ranking data to that 
developed for the other machine learning algorithms 
outlined above.  

Results
Identical analysis was performed on the rankings from 
each classifier.  A rank of 1 was considered a highly 
confident “vote” for that classification, and was given a 
weight of 1, whereas a rank of 2 was given a weight of .
97 and so on, such that a rank of 32 was given a weight 
of 0.  There are two, related, questions of interest when 
evaluating the accuracy of multi-way classifiers in this 
manner.  First, how often did the classifier make the 
“correct” classification (rank the correct classification 
highest)?  Second, when the correct classification is not 
the first ranked classification, how highly is it ranked?  
This second question quantifies the idea that if, for 
example,  a classifier ranks the correct classification 
2nd, that should be considered a more favorable result 
than if the classifier ranks the correct classification last.  
	
 To answer the first question, we asked how often the 
correct classification was ranked 1 more frequently than 
any incorrect classification for each subject (e.g., if the 
correct classification was ranked 2 more often than it 
was ranked 1 within a particular subject’s 100 test 
exemplars, that subject was considered incorrectly 
classified); we will refer to this in what follows as the 
classification accuracy.  The classification accuracy for 
the cross-correlation classifier was 0.90.   The 
classification accuracy for DIVA was 0.89.   The 
classification accuracy for NDL was  0.89.  To answer 
the second question,  the mean of the weights assigned 
to the correct classification for each subject was taken 
as a measure of the success of the classifier in 

identifying that subject, regardless of whether 
ultimately the classifier actually “chose” the correct 
classification (i.e., ranked it 1 most frequently).  In what 
follows, we will refer to this as the mean rank weight.  
The mean rank weight for the cross-correlation 
classifier was .87.  The mean rank weight for DIVA 
was .90.  The mean rank weight for the NDL classifier 
was 0.88. We also calculated the absolute accuracy for 
each time a trial was well classified (i.e. was correctly 
ranked 1) for all the 32000 trials. The results were 0.56 
for cross-correlation, 0.54 for DIVA and 0.42 for NDL.
	
 The null hypothesis for classification accuracy is that 
the classifiers are assigning the first rank by chance; 
meaning that the chance classification accuracy is 1 / 32 
= .03.  Clearly, all classifiers performed substantially 
better than chance.  To quantify this statistically, we 
computed the distribution of decision accuracies across 
50 000 random permutations of the ranking matrix.  We 
then assigned p-values to the null hypothesis by 
determining the proportion of random classification 
accuracies that were higher than the observed 
classification accuracy for each classifier (a type of 
approximate randomization test).  Similarly, the null 
hypothesis for rank weight is that all 32 ranks are being 
assigned by chance.  We assigned p-values to the null 
hypothesis by determining the proportion of mean rank 
weights in the random 50 000 permutations of the 
ranking matrix that were higher than the observed mean 
rank weight.  The null hypothesis was rejected for all 
classifiers, on both measures of accuracy, at p < .0001 
(the same was true for absolute accuracy).

Discussion
We set out to investigate whether we could accurately 
identify individuals on the basis of unique features of 
their neural activity.  After advancing the proposition 
that one cognitive structure likely to be unique to 
individuals is the detailed organization of semantic 
memory, we submitted ERP data acquired in a semantic 
memory task to multiple pattern classifiers: cross-
correlation, DIVA, and NDL.  All three classifiers were 
able to classify individual waveforms with a very high 
degree of accuracy robustly above chance---indeed, 
performance was near ceiling in most of our analyses, 
particularly for the training data. The fact that these 
results are very similar for the three different methods 
used shows that the data includes robustly identifiable 
differences across individuals, which can be detected by 
a variety of methods.  It also demonstrates that our 
cognitive linking premise-- that access to semantic 
memory is a uniquely individual process-- is at least not 
entirely defunct as a rationale. 
	
 There are numerous avenues of future research 
advancing our treatment here of the brainprint problem.  



As a one example, it would be interesting to analyze the 
EEG data in single trials to see if the information of 
whether an acronym is recognized or not--without trial 
averaging--can be detected by a classifier. Also, 
correlations between components (e.g., correlations 
between the N400 and the P2) might provide another 
source of identifiable variation between individuals.. On 
the side of signal processing, using a voting scheme 
between the algorithms, or even between different 
electrode sites may improve over the accuracy of any 
single algorithm.. A point to highlight is that the data 
processed in this work was collected for different 
purposes. It could be worthwhile to conduct an 
experiment tailored specifically to generate a different 
response by a range of users, in order to understand the 
upper limits of the brainprinting accuracy. 
	
 Finally, our success here has implications for the 
applied use of brainprinting, as for secure and 
trustworthy authentication of access to sensitive 
information.   There are multiple advantages of 
brainprinting over traditional biometrics (such as 
fingerprints and retinal scans).   As opposed to 
traditional methods, brainprinting protects not only the 
system from unauthorized access, but also the subject 
from being harmed in order to acquire its biometric 
feature, as can happen with fingerprints, for example 
(BBC news: Malaysia car thieves steal finger).  Our 
success here at uniquely identifying individuals even in 
a dataset not designed specifically for generating 
maximally unique waveforms indicates that existing 
computational methods are sufficiently sophisticated to 
make applied brainprinting feasible, in principle. In 
future research, we aim to more rigorously explore the 
theoretical and practical considerations that will allow 
this work to be of practical use to society.  
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